Abstract:
A fuel injector testing machine is provided. The machine includes a head unit having a flow meter, and a fuel injector holding assembly. The head unit and/or the fuel injector holding assembly can be moved relative to each other, allowing the head unit to test a subset of fuel injectors held on the fuel injector holding assembly, and subsequently can test another subset of the fuel injectors via movement of the head unit and/or fuel injector holding assembly.
Abstract:
Disclosed herein are devices, systems, and methods relating to high-pressure fuel pump designs and features. A high-pressure fuel pump assembly includes a body, a camshaft, and an embossment. The body has a forward end and a rearward end opposite thereof and configured to couple to a low-pressure fuel pump. The camshaft is received and secured within a central bore of the body so as to be rotationally movable within the central bore. A coupler end of the camshaft is configured to couple to a drive shaft of the low-pressure fuel pump. The embossment includes at least one fastener boss configured to receive a fastener to couple the low-pressure fuel pump to the high-pressure fuel pump assembly. The embossment is formed at the rearward end of the body such that thermal stresses that cause geometrical deformations at the embossment are reduced through a range of engine temperature operating conditions.
Abstract:
An improved apparatus for repairing fuel injector hold-down bolt holes is disclosed. The apparatus can be readily mounted to the passage through which the fuel injector passes via a flange that fits inside the passage and thus generally avoids the need to remove the engine in order to conduct the repairs. The apparatus further provides guides or bushings that allow for the precise alignment of various tools to repair the hold-down bolt hole.
Abstract:
Technology is provided for a fuel injector mounting system for mounting an injector to an engine cylinder liner. The system includes an injector adapter having an adapter body including a first end portion threaded for engagement with a cylinder liner and an injector port formed in the adapter body opposite the first end portion. The injector port includes a plurality of concentric bores configured to receive the proximal end portion of an injector. A flange extends transversely from the adapter body and a collar engages a portion of the injector and connects to the flange to retain the injector in the adapter. A transverse passageway extends through a sidewall of the adapter body and intersects the injector port and an annular fitting is disposed on the injector adapter for fluid communication with the transverse passageway. An injector support bracket attaches a distal end portion of the injector to the engine.
Abstract:
In a fuel injection valve support structure which can apply a substantially constant set load, the fuel injection valve has first and second load receiving portions, the first load receiving portion being supported on the engine, the second load receiving portion being supported on an elastic support member which receives a set load from a fuel supply cap. The elastic support member includes a base plate placed on the second load receiving portion, and an elastic piece curving rearward from one end toward the other end of the base plate, with an apex portion in pressure contact with the cap, the base plate has a portion overhanging from the second load receiving portion and supporting a tip end portion of the elastic piece. The overhang portion starts bending when a load the overhang portion receives from the cap through the elastic piece reaches or exceeds a predetermined value.
Abstract:
The invention relates to a cylinder head blank (9) for a high-pressure pump (1), which is in particular configured as a radial or in-line piston pump for fuel injection systems of air-compressing, auto-ignition internal combustion engines, comprising a base (10) having a high-pressure outlet (16) and a plurality of low-pressure connecting points (13-15). Here, the plurality of low-pressure connecting points (13-15) are closed in a raw state, wherein a low-pressure connection (11) can be fitted to each of the low-pressure connecting points (11). The invention further relates to a cylinder head for a high-pressure pump (1) and to a high-pressure pump (1).
Abstract:
A fuel injection assembly for a combustion engine includes an injector body, an injector cupradially enclosing an axial end of the injector body, and a spring clip coupling the injector cup with the injector body. The spring clip includes a ground plate with a main extension plane perpendicular to a longitudinal axis of the fuel injection assembly, a recess extending inwards from a lateral end of the ground plate to a bottom part having a circle-segment contour extending through an angle between 270° to 180°, and at least one spring element fixed to the ground plate. The spring element of the spring clip has a contact region with the injector cup, and the ground plate has a contact region with the injector body, whereby the spring element exerts a spring force on the injector cup. The ground plate of the spring clip extends into a cutout of the injector cup.
Abstract:
A protective structure for a fuel pump includes a protector including a connecting wall, a first protective wall, and a second protective wall. The first protective wall and the second protective wall are disposed outside the fuel pump assembled to an internal combustion engine. A standing surface of the second protective wall on a side opposite to a second base end surface in a standing direction of the second protective wall includes a curved surface that is concave on the second base end surface side and that becomes closer to the second base end surface side as the curved surface becomes farther from the first protective wall.
Abstract:
A system, which may be embodied particularly as a fuel injection system for high pressure injection in internal combustion engines, includes a fuel distributor and a mounting support, which is used for fastening the fuel distributor to an externally-mounted structure, particularly a cylinder head, of an internal combustion engine. In this case, a damping composite element is provided, which is connected to the mounting support and/or the fuel distributor. The damping composite element includes at least one metal layer, which is formed at least essentially of a metallic material, and at least one elastically deformable damping layer.
Abstract:
A holder for fastening at least one component, particularly a fuel distributor, to an internal combustion engine. The holder includes an elastically deformable damping element, a holder body and a spring element, which are situated lying one behind the other with reference to an axis. In response to an assembly using the fastening arrangement, a prestressing of the spring element and a prestressing of the damping element are made possible. Furthermore, a fuel injection system is described having a fuel distributor and such a holder, which is used for fastening the fuel distributor on an internal combustion engine.