Abstract:
An air-conditioning apparatus includes a refrigerant circuit, an air-conditioning load state detection unit, an operation-state detection unit, and a controller. The refrigerant circuit includes a main circuit and a bypass circuit. The air-conditioning apparatus has a simultaneous heating and defrosting operation mode. In the simultaneous heating and defrosting operation mode, the controller controls a compressor, a pressure reducing device, and a defrosting refrigerant pressure-reducing device such that control amounts of the compressor, the pressure reducing device, and the defrosting refrigerant pressure-reducing device reach respective normal-time control target values that are set based on an air-conditioning load state and an operation state.
Abstract:
A refrigeration apparatus includes a multistage compression mechanism, switching mechanisms, intercoolers, oil separators, and a control unit. The multistage compression mechanism has one high-stage-side compression mechanism and a plurality of low-stage-side compression mechanisms connected in series. The switching mechanisms are connected to blow-out pipes of the low-stage-side compression mechanisms. The switching mechanisms switch between cooling and heating operation cycles. The intercoolers cool refrigerant blown out from the low-stage-side compression mechanisms during the cooling cycle. The oil separators are disposed between the switching mechanisms and the intercoolers. The oil separators separate lubricating oil from refrigerant blown out from the low-stage-side compression mechanisms during the cooling cycle. The control unit controls the multi-stage compression mechanism and the switching mechanisms. Refrigerant from the low-stage-side compression mechanisms passes through the oil separators and intercoolers during the cooling cycle, not during the heating cycle.
Abstract:
Heat pump equipment comprising at least three heat exchangers, one of which is intended to be located in an enclosed region and the other two of which are intended to be located outside the enclosed region. Each heat exchanger has a delta connection end connected in heat-exchange fluid communication with a delta arrangement. The delta connection end of each heat exchanger is connected to both of the delta connection ends of the other two heat exchangers via the delta arrangement. There are three fluid-expansion devices, one between the two connections of each pair of adjacent connections of the heat exchangers to the delta arrangement. The present invention extends to heat pump equipment comprising at least three heat exchangers connected in a heat-exchange fluid circuit, one of which heat exchangers is intended to be located in an enclosed region and another of which is intended to be located outside the enclosed region. A third one of the heat exchangers is arranged so that air which flows through an aperture in a wall which forms a boundary of the enclosed region passes over the said third heat exchanger.
Abstract:
An oil return method for multi-split air conditioner in heating comprises steps of: S1, adjusting operation frequency f0 of a compressor (11) to a first preset oil return frequency f1, and simultaneously, adjusting open degree S0 of each indoor throttling element (22) to a preset oil return open degree; S2, measuring operation parameters of the air conditioner; S3, judging whether the air conditioner operates abnormally, jumping to Step S4 if so, or jumping to Step S5 if not; S4, exiting from oil return process, adjusting the operation frequency f0 of the compressor (11) to a second preset oil return frequency f2, judging whether the air conditioner operates abnormally, existing from the oil return process if so, or jumping to Step S5 if not; S5, ending the oil return process when oil return time reaches the oil return time t2.
Abstract:
An air conditioner includes a compressor, a flow switching part, an outdoor heat exchanger including a plurality of refrigerant tubes for guiding the refrigerant heat exchanged with outdoor air, a main expansion valve disposed at one side of the outdoor heat exchanger, a first inlet/outlet tube extending from the flow switching part to the outdoor heat exchanger, and a second inlet/outlet tube extending from the outdoor heat exchanger to the main expansion valve. The outdoor heat exchanger includes a header defining a flow space for the refrigerant, the header including an upper header and a lower header, a check valve disposed between the upper header and the lower header to guide the refrigerant to flow in one direction, and a bypass tube extending from the lower header to the second inlet/outlet tube to guide a discharge of a liquid refrigerant existing in the lower header.
Abstract:
An alternating type heat pump has first to third rows of outdoor unit coils adapted to selectively perform the functions of an evaporator and a condenser in accordance with the outdoor conditions and the load variations, thereby improving the performance of the heat pump, and is capable of allowing the first to third rows of outdoor unit coils to be operated as a condenser in an alternating manner under the conditions where frost on the outdoor unit coils may be formed especially in winter seasons, thereby basically preventing the conditions on which the frost is formed.
Abstract:
An air conditioning system usually referred to as an electric heat pump, which employs reverse cycle refrigeration apparatus to condition air inside a building for heating in the winter months, and for cooling in the summer months, utilizing one heat exchanger coil disposed in heat exchange relation to the flow of conditioned air circulating within a building, and two heat exchanger coils disposed in heat exchange relation to the flow of ambient air circulating outside a building, wherein each said heat exchanger coil comprises a separate and singular component part of a single air conditioning circuit connected to, and served by one single compressor; and wherein, each of the said outside heat exchanger coils are designed to change functions independent of the other, from that of an evaporator, to that of a condenser, for the purpose of inhibiting the accumulation of frost on, and/or removing frost from said outside heat exchanger coil when the heat pump is operating in the heating mode without reversing the flow of refrigerant within, or impeding the flow of refrigerant to said inside heat exchanger coil, whereby said inside heat exchanger coil will continue to function in the condenser mode, and will continue to furnish heat to the inside of a building during the defrost cycle of either of the said outside heat exchanger coils, and whereby heat generated by one said outside heat exchanger coil during the defrost cycle of that coil will be reabsorbed into the heat pump system via the other outside heat exchanger coil and circulated through the same refrigeration circuit, in a manner that will improve the efficiency of said heat pump.
Abstract:
During heat applying operation, both an air-source heat exchanger that exchanges heat with the atmosphere as a heat source and an earth-source heat exchanger that uses geothermal heat as a heat source serve as evaporators to collect heat from the atmosphere and the geothermal heat. During defrosting operation, while a four-way valve is switched to cause the air-source heat exchanger to serve as a radiator, and the earth-source heat exchanger to serve as an evaporator to collect the geothermal heat, and the collected geothermal heat is collected in the main circuit via the sub-circuit.
Abstract:
An air conditioner includes a compressor, a flow switching part, an outdoor heat exchanger including a plurality of refrigerant tubes for guiding the refrigerant heat exchanged with outdoor air, a main expansion valve disposed at one side of the outdoor heat exchanger, a first inlet/outlet tube extending from the flow switching part to the outdoor heat exchanger, and a second inlet/outlet tube extending from the outdoor heat exchanger to the main expansion valve. The outdoor heat exchanger includes a header defining a flow space for the refrigerant, the header including an upper header and a lower header, a check valve disposed between the upper header and the lower header to guide the refrigerant to flow in one direction, and a bypass tube extending from the lower header to the second inlet/outlet tube to guide a discharge of a liquid refrigerant existing in the lower header.
Abstract:
An air conditioner including a hot gas line for receiving a portion of refrigerant compressed in a compressor, an indoor heat exchanger, an outdoor expansion device for expanding the refrigerant having exchanged heat in the indoor heat exchanger, an outdoor heat exchanger functioning as a condenser in a cooling mode while functioning as an evaporator in a heating mode, and a 4-way valve for receiving a remaining portion of the compressed refrigerant, to guide the refrigerant emerging from the compressor to the outdoor heat exchanger in the cooling mode and to the indoor heat exchanger in the heating mode. The outdoor heat exchanger includes a main heat exchanger section functioning as a condenser in the cooling mode while functioning as an evaporator in the heating mode, and an auxiliary heat exchanger for receiving the refrigerant from the hot gas line in a frosting prevention mode.