摘要:
This invention relates to using a production glass furnace to melt waste glass and other glass constituents thereby providing a radiant heat source within the furnace to efficiently gasify organic waste materials recovered from a variety of waste streams to thereby produce a synthesis gas (“Syngas”) that is comprised mostly of carbon monoxide, hydrogen, and carbon dioxide that can be further refined and sold as a high value fuel. The gasification of the organic waste within the production glass furnace has minimal impact on the composition of the glass melt thus allowing for the production of the same range of glass products as if no organic waste was added to the furnace.
摘要:
The invention relates to a meltdown device for the production of high-UV transmittive glass types, comprising a meltdown tank for a melt bath a feed opening for the supplying or laying-in of highly pure raw material for the melt bath a draw-off opening for the drawing-off of material melted in the melt tank a cover arranged above the melt tank, in which the infeed opening to the melt tank is arranged above the melt bath in the region of the cover the draw-off opening is arranged in the zone of the bottom of the melt tank a heating arrangement. The heating arrangement comprises heating elements, in particular electrodes that are arranged on the melt tank in the zone of the melt bath, as well as an agitating arrangement for stirring of the melt bath and uniform intermixing and sub-mixing into the melt of material from the mixture lying on the melt surface.
摘要:
A method and apparatus for melting vitrifiable materials employs a melting tank for containing a molten bath with an upper surface. The tank has a floor and side walls and channels for discharging molten materials. A crown is situated above the floor and vitrifiable materials are introduced onto the upper surface of the molten bath. A plurality of electrodes having a selected shape and position are situated inside the tank for melting the vitrifiable materials with electric current. The electrodes rest on the floor and extend across the furnace to the opposite wall so as to reduce the head of the molten bath and consequently reduce melting time and energy consumption.
摘要:
The present invention provides a method of processing organic waste (D) in divided solid and/or liquid form, the method being implemented in a single reactor (1) containing a bath of molten glass (V) surmounted by a gas phase (G), the method comprising incinerating said waste (D) in the presence of oxygen at the surface (S) of said bath of molten glass (V), and in vitrifying said incinerated waste (D) in said bath of molten glass (V). In said method, and in characteristic manner, in addition to the oxygen delivered as oxidizer into said gas phase (G), oxygen is also injected into said bath of molten glass (V) in a quantity that is sufficient to minimize or to avoid any formation of metal within said bath of glass (V); advantageously in a quantity that is sufficient to minimize or to avoid any formation of metal within said bath of glass (V) and also to subject said bath of glass (V) to moderate stirring. The present invention also provides apparatus for processing organic waste (D) in divided solid and/or liquid form by incineration and vitrification, the apparatus being suitable for implementing said method.
摘要:
The present invention provides a method of processing organic waste (D) in divided solid and/or liquid form, the method being implemented in a single reactor (1) containing a bath of molten gas (V) surmounted by a gas phase (G), the method comprising incinerating said waste (D) in the presence of oxygen at the surface (S) of said bath of molten glass (V), and vitrifying said incinerated waste (D) in said bath of molten glass (V). In characteristic manner, in said method, said waste (D) is introduced into said reactor (1) in association with dual cooling; the device (5) for feeding said reactor (1) with said waste (D) is cooled on its side adjacent to the gas phase (G), advantageously by the circulation of at least one is cooling fluid maintained at a temperature higher than the dew point of said gas phase (G), and it is also cooled, advantageously independently, on its side adjacent to the incoming waste (D). The present invention also provides apparatus for processing organic waste (D) in divided solid and/or liquid form by incineration and vitrification, which apparatus is suitable for implementing said method.
摘要:
An arc furnace that utilizes a combined DC arc system and an AC joule heating system to melt the waste disposed therein and to keep the waste material in a molten condition. The DC arc system utilizes the AC joule heating electrodes as part of the DC current path, thereby eliminating the need for a counter DC electrode. Furthermore, the AC joule heating system provides for peripheral and radial AC current flow to neighboring AC joule heating electrodes, thereby creating a stirring effect in the molten waste. This design greatly simplifies the arc furnace control system while providing a more effective thermal control of the molten waste.
摘要:
Apparatus (10) and a method for vitrifying hazardous waste includes a melting vessel (12) in which hazardous waste and any other necessary components for forming a glassy mixture upon heating are introduced for heating by a heater (38), and a metallic containment vessel (46) of the apparatus receives the melting vessel so as to receive and contain any material that exits the melting vessel upon failure. A voltage is applied across spaced electrical connections (72) of the melting vessel (46) to heat material within the melting vessel. Any failure of the melting vessel (12) is detected by a sensor (48). A stirrer (39) can be utilized to mix the material (18) during the heating. The containment vessel (46) is preferably hermetically sealed around the melting vessel (12) to contain gases as well as any melted material received from the failed melting vessel (12). The sensing of the failure can be either by a pressure change in the hermetically sealed chamber (58) or by sensing of the presence of material received by the containment vessel (46) from the failed melting vessel (12) such as by electrical circuit type detection.
摘要:
Apparatus (10) and a method for vitrifying hazardous waste includes a melting vessel (12) in which a stirrer (38) mixes hazardous waste and any other necessary components for forming a glassy mixture upon heating while an electrical current is applied across the melting vessel and the stirrer to provide electrical current flow, and a metallic containment vessel (46) of the apparatus receives the melting vessel so as to receive and contain any material that exits the melting vessel upon failure. Any failure of the melting vessel (12) is detected by a sensor (48). The containment vessel (46) is hermetically sealed around the melting vessel (12) to contain gases as well as any melted material received from the failed melting vessel (12). The sensing of the failure can be either by a pressure change in the hermetically sealed chamber (58) or by sensing of the presence of material received by the containment vessel (46) from the failed melting vessel (12) such as by an electrical circuit type detection.
摘要:
A bottom outlet device is provided for a glass melting furnace, with heating of a glass melt being effected to within the temperature range of the electrical conductivity of the melt by way of electrodes disposed in the interior of the furnace and projecting into the melt. An inductively heatable and metallic outlet unit projects from the bottom of the furnace and includes an outlet opening and an interior outlet channel communicating with the outlet opening. An outlet block comprised of ceramic bricks is disposed above the outlet unit and includes a throughgoing channel which opens toward the interior of the furnace and which is flush with the interior outlet channel of the outlet unit. A bottom electrode comprised of metal is disposed at a lowermost portion of the interior of the furnace. The bottom electrode is penetrated by a further channel which is flush with the throughgoing channel in the outlet block and is thereby in communication with the outlet opening of the outlet unit.
摘要:
An glass manufacturing process and apparatus having a vertical air-cooled electric furnace and a transverse air-cooled refiner section. The furnace and the refiner are provided with a plurality of molybdenum plate electrode cartridge assemblies. Molten glass is removed from the furnace refiner section by means of a plurality of basin cylinders symmetrically disposed within the transverse refiner. An extruder mechanism accepts molten glass from each basin cylinder and applies the molten glass to a pair of extrusion rolls and onto a molten tin bath. The extrusion rolls are eccentrically pivoted off-center such that the separation distance between them can be varied. A cutting frame is then lowered over the tin bath such that the molten glass sheet is held firmly while it is cut into lite sizes by a cutting mechanism. After cutting, a transfer unit having suction orifices is lowered over the glass sheet and lifts the newly cut glass sheet either to an annealing stage or to a tempering stage. The cut glass sheet then undergoes electronic inspection and packaging.