摘要:
A radar-enabled device that manages radar interference. In particular, the radar-enabled device detects a radar signal transmitted by a second radar-enabled device, transmits a notification of the detected radar signal, receives localization information associated with the second radar-enabled device, and sets a device location based on the received localization information. Additionally, the radar-enabled device may adjust a timing of radar signal transmissions to avoid subsequent detections of radar signals transmitted by the second radar-enabled device.
摘要:
Positioning, navigation, and timing (“PNT”) signals, such as those used in GNSS or LORAN systems, may be vulnerable to spoofing attacks. To generate trustworthy time and location data at a receiver, one must at least reduce the likelihood of or be capable of detecting spoofing attacks. Embodiments of the present invention, as presented herein, provide solutions for detecting spoofing of PNT signals. Various aspects incorporated into the described embodiments which assist in detecting spoofing attacks may include but are not limited to: monitoring the SNR of received PNT signals of a first modality and switching over to an alternate PNT modality when an anomaly is detected, comparing data associated with signals of multiple PNT modalities to identify a discrepancy indicative of spoofing on one of the multiple PNT modalities, and implementing a security regime to prevent spoofers from being able to produce perceivably authentic, but corrupt, replica signals of a PNT modality.
摘要:
A user enters a location with a user device. A beacon device broadcasts a first beacon device code comprising a hardware identifier via a local wireless network at the location. A service application of the user device receives the first beacon device hardware identifier, logs a check-in status of the user, and transmits the check-in status to a service provider system. The beacon device generates, after a predetermined period of time, a subsequent beacon device code comprising a random number to broadcast at the location via the local wireless network. In response to receiving the subsequent beacon device code broadcast by the beacon device, the user device logs and transmits a subsequent check in status to the service provider system via the network. The service provider system provides services to the user device or another device at the location in accordance with the check-in status of the user device.
摘要:
An earth positioning system (EPS) is provided. The EPS includes a plurality of fixed LED lights with communication functions and a mobile communications device. A cloud computer and at least one map marked with world coordinates of the fixed LED lights may be further included. The LED light includes a substrate, at least one LED die, a power supply, a wireless communication module, a control unit and a housing. The LED lights may be arranged in indoor and outdoor environments, with coordinates represented in longitude, latitude and altitude. The coordinates are included in a map data of the cloud computer. When the mobile communication device moves with its carrier, the world coordinates of the mobile communication device can be located based on the coordinates of the LED lights nearby or based on the unique IDs of the LED lights together with the aforementioned map.
摘要:
A method to be executed by a user terminal for searching for locations of one or more wireless devices that are located within an area in which the one or more wireless devices can wirelessly communicate with the user terminal, wherein each of the one or more wireless devices periodically transmits a beacon signal. The method includes detecting a number of the one or more wireless devices that are located within the area based on the beacon signals; determining a transmission period for transmitting the beacon signals depending on the number of the one or more wireless devices; and instructing the one or more wireless devices that are located within the area to transmit the beacon signals in accordance with the determined transmission period.
摘要:
An emergency exit sign having a beacon module for indoor positioning and an indoor positioning system using the same are provided. The emergency exit sign includes a power supply unit, an AC/DC converter, an indoor positioning beacon module, an LED lamp, and a charger. The power supply unit receives an input of a power source and supplies the power source. The AC/DC converter converts the power source supplied and supplies a driving power source. The indoor positioning beacon module periodically wireless transmits a beacon signal including a beacon ID through a built-in antenna. The LED lamp is installed within the housing such that the lamp is positioned in rear of the display. When a power source is not supplied from the power supply unit, the charger supplies a driving power source.
摘要:
A method to support client device position discovery within a building includes ascribing building position coordinates to beacons within the building. The building position coordinates are converted to physical position coordinates. The physical position coordinates are augmented with at least one additional parameter that supports position resolution. A client device communicates with accessed beacons positioned within the building. A beacon location database characterizing the physical locations of the accessed beacons is also accessed. The physical location of the client device is computed based upon the physical locations of the accessed beacons.
摘要:
Position location signaling system, apparatus, and method are disclosed. Position location beacons can each be configured to transmit a frequency interlaced subset of orthogonal frequencies spanning substantially an entire channel bandwidth. The orthogonal frequencies can be pseudorandomly or uniformly spaced, and each beacon can be allocated an equal number of orthogonal frequencies. Each frequency of the interlaced subset of orthogonal frequencies can be modulated with an element of a predetermined data sequence. A mobile device can receive one or more of the beacon signals and determine a position using a position location algorithm that determines position in part on an arrival time of the beacon signal. Where the mobile device can receive three or more beacon signals, the mobile device can perform position location by trilateration to the beacon positions based, for example, on a time difference of arrival.
摘要:
The invention concerns a unit having a glidepath aerial (1) and a support organ (2) designed to be mounted on the front landing gear of an aircraft, with said landing gear forming an electrically conductive ground plane. According to the invention: this aerial (1) is mounted on the support organ (2) and is electrically insulated from this support organ (2) by insulating elements, the support organ (2) has a longitudinal dimension at least equal to around one quarter of the wavelength λ at which the aerial functions, so that the distance separating this aerial (1) and the ground plane is greater than λ/4, and the aerial (1) also has a transmission line (13, 15) designed to connect the aerial (1) to a receiver in the aircraft; this transmission line (13, 15) is surrounding by an electromagnetic shielding element (12) serving as a faradization screen for the transmission line (13, 15), and this element is designed to be electrically connected to the ground plane.
摘要:
A system for improving the accuracy of location coordinate determined in a survey of a chosen region, using a computer. A grid of spaced apart points is imposed on the region, and a set of survey control points is provided. A "near set" of nearest survey control points is associated with each grid point. For each grid point, a transformation T from a first (global) datum and coordinate system to a second (local) datum and coordinate system is determined that minimizes a collective difference between coordinates of each survey control point in the near set and the corresponding coordinates of that survey control point under the transformation T. For one, two or three coordinates of each grid point, a difference .DELTA. between the coordinate(s) of the grid point in the near set and the corresponding coordinate(s) of that grid point under the transformation T is computed. An interpolation function is determined that approximately matches the coordinate(s) difference .DELTA. at each grid point. The interpolation function provides a continuous datum-to-datum mapping between all points of the first and the second coordinate systems. Determination of location of each survey point may use GPS, GLONASS, modified LEO, LORAN or any other suitable location determination system.