Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may receive a first set of data associated with a user, receive a second set of data associated with one or more lockout procedures performed by the user, receive a request to actuate a locking mechanism of an electronic lock configured to prevent a machine in an industrial automation application from being operational, and send a signal to the electronic lock to actuate the locking mechanism when the second set of data indicates that the lockout procedures have been performed by the user and the data corresponds to an authorized user.
Abstract:
A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.
Abstract:
An industrial automation system includes a first computing device that communicatively couples to a second computing device via a communication network. The first computing device receives image data capturing a visual representation of industrial automation equipment in operation via the communication network, in which the image data is acquired by the second computing device; determines an identity of the industrial automation equipment based at least in part on the image data; determines relevant information regarding the industrial automation equipment based at least in part on the identity of the industrial automation equipment; and instructs the industrial automation equipment, the second computing device, the first computing device, the industrial automation system, a user, or any combination thereof to perform one or more operations in the industrial automation system based at least in part on the relevant information.
Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may receive a first set of data associated with a user, receive a second set of data associated with one or more lockout procedures performed by the user, receive a request to actuate a locking mechanism of an electronic lock configured to prevent a machine in an industrial automation application from being operational, and send a signal to the electronic lock to actuate the locking mechanism when the second set of data indicates that the lockout procedures have been performed by the user and the data corresponds to an authorized user.
Abstract:
A publish-subscribe architecture based blackboard system for selecting and exchanging selected information among a plurality of processing modules using filters for implementing conditions described in a procedural language to reduce the amount of information transmitted between the processing modules. More than one filter may be dynamically installed in a message hub to select and collect the published information to be sent to a certain subscribing module. By using the procedural language to describe the filters, the message hub can more intelligently select the information to be sent to the subscribing module. This reduces the amount of information transmitted via communication channels. Further, the subscribing module may be relieved from the task of filtering the information received from the message hub, allowing the subscribing module to devote more resources to other operations.
Abstract:
A walking robot and a control method thereof. The walking robot includes a main communication path, a subsidiary communication path, at least one master generating a communication protocol and transmitting the communication protocol through the main and subsidiary communication paths, and a plurality of slaves communicably connected to the at least one master through the main and subsidiary communication paths, increasing a value of an access counter of the communication protocol received through the main communication path, decreasing a value of the access counter of the communication protocol received through the subsidiary communication path, and forming loop-back paths connecting the main communication path and the subsidiary communication path when a communication error has occurred, wherein the at least one master judges whether or not the communication error has occurred from the values of the access counter of the communication protocol having passed through the plurality of slaves.
Abstract:
A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.
Abstract:
In one embodiment, a multi-purpose sensor may couple to a machine operating in an industrial environment and include numerous sensors disposed within the multi-purpose sensor to acquire sets of data associated with the machine or an environment surrounding the machine. A first portion of the sets of data may include historical sensor measurements over time for each of the sensors, and a second portion of the sets of data may include sensor measurements subsequent to when the first portion is acquired for each of the sensors. A processor of the multi-purpose sensor may determine a baseline collective signature based on the first portion, determine a subsequent collective signature based on the second portion, determine whether the collective signatures vary, and generate signals when a variance exists. The signals may cause a computing device, a cloud-based computing system, and/or a control/monitoring device to perform various actions.
Abstract:
In one embodiment, a manifold apparatus may include a number of housings. The housings may receive an electrical or a fluid conduit. The manifold apparatus may also include an actuation mechanism of each of the number of housings configured to control a supply of electricity or fluid from the respective electrical or fluid conduit to one or more industrial automation equipment, and a locking mechanism including a number of armatures. Each of the number of armatures is associated with a respective housing of the plurality of housings, and each of the number of armatures is configured to physically prevent a respective actuation mechanism of the respective housing from changing states.
Abstract:
In one embodiment, a non-transitory computer readable medium may include computer-executable instructions that, when executed by a processor, may receive a first set of data associated with a user, receive a second set of data associated with one or more lockout procedures performed by the user, receive a request to actuate a locking mechanism of an electronic lock configured to prevent a machine in an industrial automation application from being operational, and send a signal to the electronic lock to actuate the locking mechanism when the second set of data indicates that the lockout procedures have been performed by the user and the data corresponds to an authorized user.