Abstract:
A method for simultaneously forming alkali metal layers includes heating a laminate structure including a top layer, a bottom layer, and an alkali metal layer sandwiched between opposing facing surfaces of the top layer and the bottom layer. The laminate structure is heated to a peel temperature to at least partially melt the alkali metal layer and form a volume of molten alkali metal at the location of a peel site within the alkali metal layer. The top layer and the bottom layer apart from each other such that the alkali metal layer splits internally at the location of the peel site and is divided between the top layer and the bottom layer.
Abstract:
The invention relates to a method for applying polymer patches, in particular from polymer electrode material, on a carrier substrate, including the following method steps:
a) plasticizing the polymer electrode material to form a melt, b) feeding the plasticized polymer electrode material via at least one die to a heated, structured roller or to a heated, structured conveyor belt, wherein the roller and/or the conveyor belt have recesses that correspond to the dimensions of the patches to be applied, c) applying the plasticized polymer electrode material on a carrier substrate by bringing the roller and/or the conveyor belt in contact with a carrier substrate.
Abstract:
A lithium battery includes a cathode, a composite lithium metal anode, and an electrolyte in contact with the cathode and the composite lithium metal anode. The composite lithium metal anode includes a porous matrix and lithium metal disposed within the porous matrix.
Abstract:
Provided herein is a cathode for lithium-sulfur battery. The cathode for lithium-sulfur battery has a structure for improved in charge/discharge efficiency, charge capacity, and life span. In particular, in the cathode structure, an active material is inserted into a porous carbon structure and a surface of the porous carbon structure is densely coated with the conducting material thereby maximizing the contents of an active material and a conducting material in the cathode without a current collector.
Abstract:
Disclosed is a method of manufacturing an anode for a thermally activated reserve battery using a thin metal foam and a cup, which includes rolling a metal foam, coating the metal foam with a molten eutectic salt, impregnating the metal foam with lithium, and providing the metal foam with an electrode cup and a conductive separation membrane, and in which lithium having excellent capacity and output characteristics is employed in an anode for a thermal battery operating at high temperature.
Abstract:
A secondary particle-type electrode active material including: at least one pore; and a shell surrounding the at least one pore, wherein the shell includes a first layer and a second layer, the first layer including a first carbonaceous material, and the second layer including a composite and disposed on the first layer, wherein the composite includes a silicon material and a second carbonaceous material. Also, an electrode and a secondary battery include the electrode active material.
Abstract:
A secondary battery 100 comprises a positive electrode current collector 221 and a positive electrode active material layer 223 applied on the positive electrode current collector 221 and containing at least a positive electrode active material. The lithium-ion secondary battery 100 further comprises a negative electrode current collector 241 provided so as to oppose the positive electrode current collector 221 and a negative electrode active material layer 243 applied on the negative electrode current collector 241 and containing at least a negative electrode active material. The lithium-ion secondary battery 100 is also formed with a porous insulating layer 245 which contains stacked resin particles having insulating properties and is formed so as to cover at least one of the positive electrode active material layer 223 and the negative electrode active material layer 243 (in this case, negative electrode active material layer 243). The lithium-ion secondary battery 100 further comprises, on the edge of the insulating layer 245, a molten part 246 where the resin particles are melted.
Abstract:
Methods of forming a lithium-ion battery on a vehicle component by spinning and vehicle components with a batteries formed thereon are disclosed. The spinning may include electrospinning. A first electrode layer may be spun, followed by a first separator layer, a second electrode layer, and a second separator layer. Each layer may be spun directly onto the previously spun layer to provide a battery that does not include metal current collectors. The anode and/or cathode layers may include polyacrylonitrile (PAN) fibers. To render the anode and cathode layers conductive, they may be carbonized using a heat source (e.g., a laser). The disclosed method may allow for the formation of batteries directly onto a vehicle component, such as a body panel, thereby using otherwise empty space to increase the battery capacity of the vehicle.
Abstract:
A method of forming a lithium-ion battery by spinning and a battery formed thereby are disclosed. The spinning may include electrospinning A first anode layer may be spun, followed by a first separator layer, a first cathode layer, and a second separator layer. Each layer may be spun directly onto the previously spun layer to provide a battery that does not include metal current collectors. The anode and/or cathode layers may include polyacrylonitrile (PAN) fibers. To render the anode and cathode layers conductive, they may be carbonized using a heat source (e.g., a laser). The disclosed method may allow for the incorporation of high capacity materials, such as sulfur and/or silicon, in the electrode active materials.
Abstract:
An electrode thin film to be used in an all-solid lithium battery is formed predominantly of lithium cobaltate and has a density larger than or equal to 3.6 g/cm3 and smaller than or equal to 4.9 g/cm3.
Abstract translation:用于全固体锂电池的电极薄膜主要由钴酸锂形成,并且具有大于或等于3.6g / cm 3且小于或等于4.9g / cm 3的密度。