Abstract:
A protection system includes: a first positive terminal; a second positive terminal; a first relay configured to be opened and closed by contact and separation of a first contact portion and a second contact portion; and a fuse. The first relay and the fuse are connected in series between the first positive terminal and the second positive terminal, and when an electric current exceeding a threshold current flows to the first relay, the first contact portion and the second contact portion are separated in the first relay at a first time, and when the first contact portion and the second contact portion are separated, an arc discharge occurs between the first contact portion and the second contact portion, an arc discharge occurs between the first electrode and the second electrode of the fuse at a second time, the arc discharge occurs at both of the first relay and the fuse and a difference in potential between the first electrode and the second electrode of the fuse increases during a period between the second time and a third time, and the first positive terminal and the second positive terminal are disconnected at a fourth time.
Abstract:
A protection system includes: a first positive terminal; a second positive terminal; a first relay configured to be opened and closed by contact and separation of a first contact portion and a second contact portion; and a fuse. The first relay and the fuse are connected in series between the first positive terminal and the second positive terminal, and when an electric current exceeding a threshold current flows to the first relay, the first contact portion and the second contact portion are separated in the first relay at a first time, and when the first contact portion and the second contact portion are separated, an arc discharge occurs between the first contact portion and the second contact portion, an arc discharge occurs between the first electrode and the second electrode of the fuse at a second time, the arc discharge occurs at both of the first relay and the fuse and a difference in potential between the first electrode and the second electrode of the fuse increases during a period between the second time and a third time, and the first positive terminal and the second positive terminal are disconnected at a fourth time.
Abstract:
A circuit including a source, a load, and an isolation circuit for controllably isolating the load from the source. The isolation circuit is disposed between the source and the load. The isolation circuit includes at least one insulated-gate bipolar transistor (IGBT) and at least one gate turn-off thyristor (GTO) in parallel with the insulated-gate bipolar transistor. When no fault condition exists, the GTO is configured to be ON to couple the load to the source. When a fault condition exists, the at least one IGBT is configured to turn ON. After the at least one IGBT turns ON, the at least one GTO is configured to turn OFF. After a predetermined amount of time, reflecting the post fabrication alteration to the GTO's minority carrier lifetime (e.g. electron irradiation), after the at least one GTO turns OFF, the at least one IGBT is configured to turn OFF. Alternatively, the circuit is used as an inverter switch, where at the command to turn ON is supplied, the at least one IGBT is turned ON, followed by the at least one SGTO. When commanded to turn OFF the at least one SGTO is turned OFF followed by the at least one IGBT. This alternative configuration allows the robust, controllable switching speeds of IGBTs and the superior conduction efficiency of SGTOs. The two configurations mentioned above utilize a wide range of SGTO performance, thus the ability to control the SGTOs turn-off speed by reducing its minority carrier lifetime after the device is processed is of large importance. The efficiency of all uses of the circuit can be optimized with the judicious selection of SGTO minority carrier lifetime and the ratio of active area between the SGTO and IGBT devices. In all cases there is a balance between the time the circuit can achieve hard turn-off without current commutation, the conduction efficiency of the circuit and the maximum amount of controllable current. In all cases both the conduction efficiency of the circuit is higher than an IGBT-only based circuit, and the switching performance is higher than a GTO-only based circuit.
Abstract:
A system for managing an electric power delivery system is disclosed that includes a set of remote intelligent electronic devices (IEDs) and a central IED. The remote IEDs may be configured to obtain information related to rotor angles, operating frequencies, rate of change of frequency, rotating inertia, and power consumption levels of loads and generators included in the electric power delivery system. The central IED may communicate with the remote IEDs to determine which loads and generators are associated with a sub-grid of the electric power delivery system and whether to disconnected certain loads or generators. Based on this determination, the central IED may direct the remote IEDs to disconnect loads or generators from the electric power delivery system, or to rapidly increase or decrease generator output as appropriate.
Abstract:
An underfrequency load shedding protection system for stably managing a power system by recovering a power system frequency to within a predetermined range when the power system frequency drops. An underfrequency level detection unit judges an underfrequency level of the power system frequency when the power system frequency drops resulting from power generation shortage in the power system and a load shedding unit sequentially sheds loads determined in advance based on a staying time when the power system frequency stays at any one of the underfrequency levels judged by the underfrequency level detection unit and sheds on this occasion more loads quickly when the underfrequency level at which the power system frequency stays is large.
Abstract:
Control circuit system wherein low level signals are delivered through small (miniature) gauge control conductors to remote control circuit breakers to control connection of load devices to load bus through use of solid state circuitry. Such control may be used between the flight station of an aircraft and the various load centers remote therefrom, in an automobile or in an industrial or utility system. The circuitry is also responsive to faults in the load circuits, and current limiting warning lights (CLWL's) located in the power supply of the control conductors may limit current and indicate the status of faults in the control and/or remote power circuits. A large number of CLWL's for the different circuits may be arranged in a matrix at a control station and means with corresponding load identifying indicia are provided to facilitate changes and correlation of lighted CLWL's with respect to the controlled load switching device. The load switching devices may be associated in a plurality of priority groups and means provided to disconnect all the devices in a group simultaneously either manually or sequentially in reverse order of group priority upon increasing power system failures or in response to other control logic.
Abstract:
A device for cutting out non-essential loads in a generator and battery-fed electric plant includes a voltage detecting unit connected across the terminals of the battery. The detecting unit may be a relay. Whenever the voltage at the terminals falls below a predetermined level, the detecting unit effects the disconnection of the non-essential load or loads from the terminals of the battery and generator, while allowing the essential load or loads. The detecting unit preferably includes a differential amplifier having one of its inputs connected to a voltage divider connected in parallel with the battery and its second input coupled to a source of reference potential.
Abstract:
Described are apparatus and methods for control of multi-channel load switches with synchronized power up/down timing sequences. The slew rate control methods of the PMOS load switches contained in the N Multi-channel configuration is also described. A preferred slew rate control circuit includes a power PMOS transistor that is capable of handling load currents of several amperes along with an integrated controller. The integrated controller allows the user to program the power on/off sequences of each of the load switch channels by simply using a single or multiple input enable input pins.