Abstract:
A method for flying start control of a motor, a computer readable medium, and a power conversion system having an inverter and a controller configured by computer executable instructions in a memory to perform flying start of a rotating motor by field weakening control to control the motor responsive to the motor speed exceeding the rated speed or other non-zero threshold at startup of the power conversion system. The method includes measuring a motor speed of a motor, responsive to startup of a power conversion system, and performing a flying start operation using field weakening control to control the motor responsive to the motor speed exceeding a non-zero threshold at startup of the power conversion system.
Abstract:
A method for operating a power generation system that supplies power for application to a load is disclosed. The method may generally include receiving, at a power converter, an alternating current power generated by a generator operating at a speed that is substantially equal to its synchronous speed and converting, with the power converter, the alternating current power to an output power, wherein the power converter includes at least one switching element. In addition, the method may include receiving a control command to control a switching frequency of the at least one switching element and adjusting the switching frequency to an adjusted switching frequency that is substantially equal to a fundamental frequency of the load.
Abstract:
A three-level power conversion apparatus can suppress fluctuation in a neutral point voltage even when operated as a reactive power regulator. The three-level power conversion apparatus is composed of first and second three-level converters connected to an AC power supply, positive side and negative side DC capacitors, a three-level inverter to drive an AC motor, and converter control unit for controlling the three-level converters. The converter control unit has first and second reactive current controllers for controlling so that reactive portions of input currents of each three-level converter become a prescribed reactive current reference, first and second neutral point voltage fluctuation suppressing units for controlling a PWM controller, to make a voltage difference of two DC capacitors zero, and an active current controller for supplying a prescribed circulating active current from one three-level converter to other three-level converter.
Abstract:
A method for stably operating a lean fuel intake gas turbine engine by controlling the rotation speed of the lean fuel intake gas turbine engine for which it is difficult to control the rotation speed by controlling a fuel flow rate, is provided. In a method for operating a lean fuel intake gas turbine engine (GT) configured to use, as a fuel, a combustible component contained in a low-concentration methane gas to drive a power generator, a power converter (17) is provided between an external electric power system (19) and the power generator (11), and a rotation speed of the power generator (11) is controlled by the power converter (17), to control a rotation speed of the gas turbine engine (GT).
Abstract:
According to an embodiment of the present disclosure, an apparatus includes a transformer having a set of input terminals, a first set of output terminals, and a second set of output terminals. First and second rectifiers are coupled to the first and second sets of output terminals, respectively. The transformer is configured to transform three phase alternating current (AC) provided to the set of input terminals into first and second three phase AC outputs at the first and second sets of output terminals, respectively. The first three phase AC output is phase shifted from the second three phase AC output.
Abstract:
For open loop phase pre-charge, an apparatus includes a Switching Mode Power Supply (SMPS) charging diode and a charge generator. The SMPS charging diode pre-charges an SMPS to a regulation set point from at least one phase of an Alternating Current (AC) voltage. The charge generator is powered by the pre-charged SMPS. In response to detecting the regulation set point iteratively, the charge generator detects a specified phase angle of the AC voltage. In response to the specified phase angle, the charge generator iteratively generates a charging voltage during positive voltage interval that charges a Direct Current (DC) bus capacitor to a target DC bus voltage within a charging time interval. At least a portion of the charge generator comprises one or more of hardware and executable code, the executable code stored on one or more computer readable storage media.
Abstract:
To provide a three-level power conversion apparatus which can suppress fluctuation in a neutral point voltage even when operated as a reactive power regulator. The three-level power conversion apparatus is composed of first and second three-level converters 2A, 2B connected to an AC power supply system, positive side and negative side DC capacitors 3P, 3N, a three-level inverter 4 to drive an AC motor 5, and converter control means 10 for controlling the three-level converters 2A, 2B. The converter control means 10 has first and second reactive current control means 15A, 15B for controlling so that reactive portions of input currents of the three-level converters 2A, 2B become a prescribed reactive current reference, respectively, first and second neutral point voltage fluctuation suppressing means for controlling PWM control means 17A, 17B, respectively, so as to make a difference between voltages applied to DC capacitors 3P, 3N to be zero, and active current control means for supplying a prescribed circulating active current from the three-level converter 2A to the three-level converter 2B.
Abstract:
A power conversion apparatus capable of supplying a required reactive power while dynamically changing a dead band near 0 reactive current and maintaining a balance of DC voltage is provided. The power conversion apparatus including a three-level converter, a PWM controller for the three-level converter, an input current detector of the three-level converter, a coordinate converter that converts the current into a d-axis and q-axis current feedback, the reactive power control unit that controls a reactive power and outputs an reactive current reference, a d-axis current control unit having a dead band part for setting the d-axis current reference with hysteresis characteristics in the q-axis current feedback, and outputs the d-axis voltage reference, a q-axis current control unit that outputs a q-axis voltage reference based on the q-axis current reference, an inverse coordinate converter that outputs a three-phase AC voltage command based on the d-axis and q-axis voltage reference.
Abstract:
A line interface filter apparatus to couple a drive or group of drives to a shared multiphase AC bus, including individual phase circuits having an inductor coupled between a respective bus and drive phase lines, a tapped resistor coupled to the respective drive phase line, and a capacitor coupled between the resistor and a common connection of the capacitors of the individual phase circuits, where the capacitance of the capacitors is 5 to 15 times a per-phase equivalent capacitance of the drive or group of drives, and the resistance of the resistors is two times a damping ratio times a square root of a ratio of the filter inductance to the filter capacitance, where the damping ratio ζ is greater than or equal to 1.0 and less than or equal to 2.0.
Abstract:
In one embodiment, a cryocooler drive circuit for a cryocooler motor is provided that includes: a first switching power converter configured to track a first sinusoidal input voltage signal to provide a first sinusoidal output voltage signal at a first output node; and a second switching power converter configured to track a second sinusoidal input voltage signal to provide a second sinusoidal output voltage signal at a second output node, wherein the second sinusoidal input voltage signal is an inverted version of the first sinusoidal input voltage signal such that the cryocooler motor is driven by an alternating current flowing between the first and second output nodes.