Abstract:
A state machine includes a stator assembly arranged to generate a rotating electromagnetic field in response to a control signal and a rotor assembly, positioned adjacent to the stator assembly, arranged to rotate in response to the rotating electromagnetic field. A sensor is arranged to detect an angular position of the rotor assembly and output sensor data based on the angular position of the rotor assembly. A controller is arranged to receive the sensor data and adjust the control signal based on the angular position of the rotor assembly to adjust a torque of associated with the rotor assembly when the state machine functions as a motor or to adjust a power output from the stator assembly when the state machine functions as a generator.
Abstract:
A control circuit controls driving of a motor to switch over a shift range. A target rotation speed setting part sets a target rotation speed of the motor. A rotation speed detection part detects a present rotation speed, which is an actual rotation speed, of the motor. A rotation speed error calculation part calculates a rotation speed error, which is an error between the target rotation speed and the present rotation speed. A request torque calculation part calculates a request torque for the motor based on the rotation speed error. A phase lead correction value calculation part calculates a phase lead correction value of a current supply phase relative to a rotation phase of a rotor of the motor based on the request torque.
Abstract:
A control device for a switched reluctance motor includes an inverter having a switching circuit that switches a magnetic pole to provide a first winding pattern or a second winding pattern. With respect to a boundary dividing a driving range of the switched reluctance motor into two ranges, the control device performs switching to the first winding pattern when the torque and the rotational speed are located in the first range on the low load side, performs switching to the second winding pattern when the torque and the rotational speed are located in the second range, allows switching of the magnetic pole in a case where a current of the phase whose magnetic pole is to be switched among the three-phase coils is 0, and prohibits switching of the magnetic pole in a case where the current of the phase whose magnetic pole is to be switched is not 0.
Abstract:
A method of controlling speed of an electric machine having a rotor and a stator is provided. The method may comprise the steps of monitoring a desired speed and a measured speed of the rotor, generating a torque command based on the desired speed and the measured speed, and controlling phase current to the stator based on a hybrid closed loop analysis of the torque command, the measured speed and an estimated position of the rotor. The estimated rotor position may be derived at least partially from the desired speed.
Abstract:
A control system for a switched reluctance (SR) machine is provided. The control system may include a converter circuit that is operatively coupled to the SR machine, and a controller in communication with the converter circuit. The controller may be configured to execute two or more processes in parallel, wherein the processes include generating a torque command based on one or more of bus voltage, machine current, rotor speed and rotor position, determining a first set of current control parameters based on the torque command and the rotor speed, determining a second set of current control parameters based on one or more of the torque command, the rotor speed and the rotor position, selecting one of the first and second sets of current control parameters based on the rotor speed, and operating the gates according to the selected set of current control parameters.
Abstract:
Disclosed herein are an apparatus and a method of driving a switched reluctance motor. The apparatus includes: a power supply unit; N pairs of coils; N common switch devices each connected in series with an upper portion of each of the N pairs of coils; N pairs of lower switch devices each connected in series with a lower portion of each of the N pairs of coils; first freewheel diodes; second freewheel diodes; and a switch driving unit providing a control signal to the N common switch devices and the N pairs of lower switch devices to sequentially supply current to the N pairs of coils.
Abstract:
A method of operating an electric or hybrid system comprising a synchronous reluctance electric motor coupled to an electric or hybrid powertrain is described herein. The method comprises determining (i) a torque demand required of the electric motor and (ii) a speed of rotation of the rotor of the electric motor, and storing kinetic energy in a rotor of the electric motor from the powertrain in response to at least one of (i) the determined torque demand falling below a selected torque demand threshold and (ii) the speed of the rotor being below a selected rotor speed threshold. The method further comprises operating the electric motor by powering the electric motor with electricity to deliver energy to the powertrain in response to at least one of: (i) the determined torque demand rising above a selected torque demand threshold and (ii) the speed of the rotor falling below a selected rotor speed threshold.
Abstract:
There is provided an apparatus for driving a switched reluctance motor (SRM), the apparatus including a motor driver for applying an input voltage to each phase of the SRM to drive the SRM through a switching operation, and a processor for controlling a driving state of the SRM through control of the switching operation based on a rotational speed of the SRM.
Abstract:
Disclosed herein are an apparatus and a method of driving a switched reluctance motor. The apparatus includes: a power supply unit; N pairs of coils; N pairs of upper switch devices each connected in series with an upper portion of each of the N pairs of coils; N pairs of lower switch devices each connected in series with a lower portion of each of the N pairs of coils; 2N first freewheel diodes; 2N second freewheel diodes; and a switch driving unit providing a control signal to the N pairs of upper switch devices and the N pairs of lower switch devices to sequentially supply current to the N pairs of coils.
Abstract:
A motor control system that switches between voltage control and angle control. The motor control system includes a comparator, an angle control, and a voltage control.