Abstract:
Embodiments of wireless communication devices and methods for device discovery is generally described herein. Some of these embodiments describe an apparatus having processing circuitry arranged to configure a single-tone discovery signal for transmission in a symbol in a transmission opportunity based on an assignment pattern. The assignment pattern may define frequency positions, for a set of transmission opportunities, at which the apparatus shall transmit discovery signals in the corresponding transmission opportunity. The apparatus may have physical layer circuitry arranged to transmit the single-tone discovery signal in the corresponding transmission opportunity. Other methods and apparatuses are also described.
Abstract:
A method and apparatus of transmitting a reference signal in a wireless communication system is provided. The method includes generating a precoded reference signal or a non-precoded reference signal in accordance with a rank, and transmitting the generated reference signal. Uplink transmission using multiple transmit antennas is supported through reference signal design and related control signaling.
Abstract:
A method for activating a vehicle function, by an activation device including a transceiver to communicate with “hands-free” access equipment. The transceiver is equipped with a gyroscope and a magnetometer and two receiving antennas that have a coefficient of electromagnetic coupling between them that is below a threshold. The method includes the following steps for at least two consecutive footsteps: transmission of a signal comprising data of the gyroscope and the magnetometer of the “hands-free” equipment to the vehicle; comparison of the data with representative values of the gyroscope and the magnetometer of the transceiver; determination of a first direction of the user; determination of a second direction of the user based on an estimation of a first angle of arrival of the signal towards the transceiver; comparison of the first direction and the second direction; activation of the vehicle function on the basis of the result of the comparison.
Abstract:
An ultra low power, low complexity, low collision, deterministic modulation method that also works as a massive medium access mechanism for communication systems is based on positioning data in a communication resource space, such as time and frequency, such that the position of a symbol in that space determines its value and its access to the medium. The number base of the symbol is determined by the size of the subset of the resource space it is positioning itself in and, thereby, a few sparsely located symbols can convey a large value, while the remainder of the space can be simultaneously and massively used by other sparsely resource using members of the network.
Abstract:
A method and apparatus of transmitting a reference signal in a wireless communication system is provided. The method includes generating a precoded reference signal or a non-precoded reference signal in accordance with a rank, and transmitting the generated reference signal. Uplink transmission using multiple transmit antennas is supported through reference signal design and related control signaling.
Abstract:
A method and apparatus of transmitting a reference signal in a wireless communication system is provided. The method includes generating a precoded reference signal or a non-precoded reference signal in accordance with a rank, and transmitting the generated reference signal. Uplink transmission using multiple transmit antennas is supported through reference signal design and related control signaling.
Abstract:
An ultra low power, low complexity, low collision, deterministic modulation method that also works as a massive medium access mechanism for communication systems is based on positioning data in a communication resource space, such as time and frequency, such that the position of a symbol in that space determines its value and its access to the medium. The number base of the symbol is determined by the size of the subset of the resource space it is positioning itself in and, thereby, a few sparsely located symbols can convey a large value, while the remainder of the space can be simultaneously and massively used by other sparsely resource using members of the network.
Abstract:
A method for determining the position and vital signs of an occupant of a transportation vehicle and a transportation vehicle having a radio system and a control unit connected to the radio system. The method is based on channel impulse response (CIR) measurements and is performed using at least two UWB antennas during the operation of the transportation vehicle to determine a position and a vital sign of one or more occupants of the transportation vehicle.
Abstract:
An electronic passive entry-passive start (ePEPS) system includes a first satellite ultra-wideband antenna, a second satellite ultra-wideband antenna, a third satellite ultra-wideband antenna, and a fourth satellite ultra-wideband antenna. A remote function actuator is in electronic communication with the first satellite ultra-wideband antenna, the second satellite ultra-wideband antenna, the third satellite ultra-wideband antenna, and the fourth satellite ultra-wideband antenna. A body control module can be in electronic communication with remote function actuator. A key fob is in wireless communication with the first satellite ultra-wideband antenna, the second satellite ultra-wideband antenna, the third satellite ultra-wideband antenna, and the fourth satellite ultra-wideband antenna such that predetermined functions in a vehicle are actuated depending on the position of a user.
Abstract:
Embodiments of wireless communication devices and methods for device discovery is generally described herein. Some of these embodiments describe an apparatus having processing circuitry arranged to configure a single-tone discovery signal for transmission in a symbol in a transmission opportunity based on an assignment pattern. The assignment pattern may define frequency positions, for a set of transmission opportunities, at which the apparatus shall transmit discovery signals in the corresponding transmission opportunity. The apparatus may have physical layer circuitry arranged to transmit the single-tone discovery signal in the corresponding transmission opportunity. Other methods and apparatuses are also described.