Abstract:
An apparatus and method are provided for detecting a scanning boundary of a scanner. The apparatus includes a reference unit, an image-pickup unit, and an operating process unit. The detecting method includes steps of: a) providing an initial optical signal; b) receiving the initial optical signal and generating a reference signal in response to the initial optical signal; c) setting a first reference pixel in the scanner; d) receiving the reference signal and generating a second reference pixel; e) calculating a difference between the first reference pixel and the second reference pixel; and f) detecting the scanning boundary after adjusting the scanner according to the difference.
Abstract:
An optical scanning device for scanning a document to produce image signals related to the density of the image on successively scanned document areas includes a platen for supporting a document and a surface of substantially uniform reflectivity extending along the edge of the platen. A bar of light is directed such that it strikes the document and the surface of substantially uniform reflectivity and moves across the document in synchronization with optical scanning of the document. Light reflected from the surface of substantially uniform reflectivity is directed to a plurality of reference transducers which sense the position of the bar of light. A servo control loop, responsive to the reference transducers, positions a reflector during the scanning operation such that the area on the document being scanned is properly illuminated.
Abstract:
An image sensor controller and methods achieve faster image reading speeds by controlling the frequency of image sensor transfer clocks null1, null2 in accordance with the particular output period. Such an image sensor controller includes a drive controller that supplies to a transfer section of the image sensor transfer clocks null1, null2 whose clock frequency during dummy pixel output periods is faster than it is during an effective pixel output period, or whose clock frequency during non-reading pixel output periods is faster than it is during a reading pixel output period. A pattern selector selects among clock patterns in a table for setting null1, null2 according to the output periods of the image sensor. Even when the clock frequency of null1, null2 changes, a transfer clock ADCK signal can be supplied at a constant clock frequency to an A/D converter.
Abstract:
A scanning apparatus providing separate fixed object focal planes for transmissive and reflective original documents to be scanned, wherein a scan carriage containing illumination, sensor, and optical elements is moved together to scan an original document and to obtain a digitized representation thereof. The movable scan carriage has an illumination source disposed between the reflective and transmissive object focal planes, with the object focal plane to be used selected by changing the position of one or more optical elements within the scan carriage. The scan carriage is suspended along an axis substantially parallel to a scan line of a scanned original document and passing through a point substantially coincident with the scan line, thereby minimizing variations in lighting conditions due to vibration of the scan carriage.
Abstract:
A process for obtaining image coordinates of pixels of a digital image scanned from an original image on photographic film that has at least two fiducial marks on the photographic film associated with the original includes the steps of scanning an area of the photographic film, including the original image and the fiducial marks, with an original scan resolution to form an original digital image. The dimensional position of the fiducial marks in the original digital image is detected, and the dimensional distance between pairs of the fiducial marks is determined. The number of pixels in the original digital image between the pairs of fiducial marks is determined, and image coordinates of a location of a selected pixel of the original digital image are referenced with respect to the fiducial marks. The referencing is effected by computing a dimension-to-pixel conversion factor &agr; by dividing the dimensional distance between pairs of the fiducial marks by the number of pixels in the original digital image between the pairs of fiducial marks, and storing the dimension-to-pixel conversion factor, the reference location of the selected pixel, the original scan resolution, the dimensional distance between pairs of the fiducial marks, and the number of pixels in the original digital image between the pairs of fiducial marks on the film.
Abstract:
Apparatus for sensing an initial position of a moveable carriage mounted within a housing of an imaging device may comprise a detector having a plurality of light sensitive elements for detecting objects within a field of view. At least one of the light sensitive elements is an image sensing element and at least one of the light sensitive elements is a position sensing element. A reference mark is positioned on the housing so that is within the field of view of the position sensing element of the detector when the carriage is at about a home position. An image data processor connected to the detector and responsive to the output signals generated thereby determines whether the reference mark is within the field of view of the position sensing element of the detector.
Abstract:
A precision belt hole sensor and associated conditioning circuitry provides precise trigger signals that enable synchronous printing in a color printer. An image bar recording system, which, in a preferred embodiment, utilizes a plurality of LED image bars, forms a plurality of latent images on a moving photoreceptor which may subsequently be developed in different colors. A pair of sensors associated with each printbar views illuminated pixels at the end of a printbar, through a pair of oppositely aligned photoreceptor holes. The signals detected by the sensor are amplified and processed to provide inputs to a comparitor circuit which generates an output signal at a time which precisely defines the passage of the trailing edge of the hole, past the sensors. The signal from the comparitor is used to accomplish skew registration of the printbar and to provide sync signals to enable precise formation of the leading edge of the associated image frame.
Abstract:
A document image scanner is provided in which a platen is provided with an optical target in the form of a succession of ruling lines provided at one edge thereof. The ruling lines are inclined at an angle relative to a direction of scan of an optical sensor array such that 5% or less coverage change is provided over each pixel on a scanning line of the array. An output signal from scanning each line can be produced as a square wave signal. From the generated signal, the scanning motion may be corrected. A diagnostic tool is also provided for diagnosing scanning motion using at least two of the optical targets.
Abstract:
An optical ruler is provided on the back surface side of the top housing and close to the transparent window along a scanning direction for providing a calibration reference. The optical ruler is formed with black and white blocks alternately arranged in an array. An image sensor which has a width larger than the width of the transparent window is provided for reading the image information of the optical ruler along with a scanned sheet while being progressively driven by a step motor. A determining element computes the actual moving steps of the step motor by calculating the number of black and white pixels from the scanned image of the optical ruler. When the actual moving steps of the step motor are fewer than a predetermined threshold value, or when the frequency of the occurrences of the scan line losses is higher than a predetermined threshold value, the image sensor is driven by the step motor to scan the sheet again. As a result, the step motor can be operated in response to a closed loop control signal depending on the actual moving steps of the step motor.
Abstract:
An image reading apparatus includes a reference pattern having slanting lines, which is provided outside a reading range and read by image sensors arranged at separate positions in a sub-scanning direction. A reference-position determining unit detects one of the slanting lines in the reference pattern based on image data output from one of the image sensors so that a position of the image data when one of the slanting lines is detected is determined as a reference position. First and second delay units have line memories which store image data read out from an original image having lines, the delay units delaying outputting of the image data from the line memories line by line. First and second determining units determine image data having color values at imaginary points. An error measurement unit selects one of the imaginary points whose image data has a minimum difference between the color values of the image data. First and second line correcting units output image data having the color values at a corrected position of each picture element by using an interpolation function, the interpolation function having a set of correction factors determined based on a distance between the selected imaginary point and the reference position.