Abstract:
A method for beam therapy is provided. The method includes receiving first data indicating a plurality of target volumes within a target region inside a subject for particle beam therapy relative to a particle beam outlet on a gantry for directing a particle beam from a particle beam source. The method further includes moving automatically, one or more energy modulator components to reduce an energy of the particle beam and deliver the particle beam to the target region such that a Bragg Peak is delivered to at least one target volume of the plurality of target volumes. The method further includes repeating the moving automatically as the particle beam source rotates with the gantry around the subject, without changing the energy of the particle beam at the particle beam outlet, until every target volume is subjected to a Bragg Peak.
Abstract:
System includes a target assembly having a production chamber. The target assembly includes an electrode and a conductive base exposed to the production chamber. The target assembly has fluidic ports that provide access to the production chamber. The system also includes a fluidic-control system having a storage vessel and fluidic lines that connect to the fluidic ports. The storage vessel and the production chamber are in flow communication through at least one of the fluidic lines. The system also includes a power source that is configured to be electrically connected to the electrode and the conductive base. The production chamber, the electrode, and the conductive base form an electrolytic cell when an electrolytic solution is disposed in the production chamber. The power source is configured to apply voltage to the electrode and the conductive base to deposit a solid target along conductive base.
Abstract:
A range shifting device configured to be placed close to a portion of a body of a patient during radiation beam treatment. The radiation beam treatment can include stereotactic radiosurgery (SRS). The range shifting device can be incorporated into an existing SRS localization system during SRS treatment. The range shifting device is configured to be placed close to the head of a patient during SRS treatment. The range shifting device is comprised of range shifting material. The range shifting device can be a range shifting helmet. The range shifting helmet can include a hollow frame including a plurality of apertures in which inserts made of range shifting material can be inserted.
Abstract:
A range shifting device configured to be placed close to a portion of a body of a patient during radiation beam treatment. The radiation beam treatment can include stereotactic radiosurgery (SRS). The range shifting device can be incorporated into an existing SRS localization system during SRS treatment. The range shifting device is configured to be placed close to the head of a patient during SRS treatment. The range shifting device is comprised of range shifting material. The range shifting device can be a range shifting helmet. The range shifting helmet can include a hollow frame including a plurality of apertures in which inserts made of range shifting material can be inserted.
Abstract:
The invention comprises a multi-axis charged particle irradiation method and apparatus. The multi-axis controls includes separate or independent control of one or more of horizontal position, vertical position, energy control, and intensity control of the charged particle irradiation beam. Optionally, the charged particle beam is additionally controlled in terms of timing. Timing is coordinated with patient respiration and/or patient rotational positioning. Combined, the system allows multi-axis and multi-field charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful proximal distal energy about the tumor.
Abstract:
Disclosed embodiments include an energy degrader for attenuating the energy of a charged particle beam. The energy degrader may include a first energy attenuation member presenting a annular beam entry face and a continuous helical beam exit face, a second energy attenuation member presenting a continuous helical beam entry face and an annular beam exit face. The first and second helical surfaces may face each other. The energy degrader may also include a drive assembly configured for rotating the first and the second energy attenuation members around respectively a first axis and a second axis which are parallel to each other. The degrader may have a small moment of inertia, allowing more accurate and faster variation of the beam energy.
Abstract:
A particle acceleration system includes a particle accelerator and at least one beam-transparent stripper element. The particle accelerator is configured to accelerate charged particles along a trajectory. The beam-transparent stripper element(s) is/are positioned along the trajectory. Each beam-transparent stripper element has a surface normal to the trajectory, wherein said surface defines a plurality of apertures configured to cause a first plurality of charged particles that strike the surface to undergo a stripping process while a second plurality of charged particles pass through one or more of the plurality of apertures without undergoing the stripping process.
Abstract:
An object of the present invention is to provide a graphite sheet for a beam sensor, which is excellent in yield when subjected to laser working. The present invention is a graphite sheet for a beam sensor characterized in that the graphite sheet has no eyeball-shaped convex portions on a surface of its a-b plane.
Abstract:
The invention comprises a multi-axis charged particle irradiation method and apparatus. The multi-axis controls includes separate or independent control of one or more of horizontal position, vertical position, energy control, and intensity control of the charged particle irradiation beam. Optionally, the charged particle beam is additionally controlled in terms of timing. Timing is coordinated with patient respiration and/or patient rotational positioning. Combined, the system allows multi-axis and multi-field charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful proximal distal energy about the tumor.
Abstract:
The invention comprises a multi-axis charged particle irradiation method and apparatus. The multi-axis controls includes separate or independent control of one or more of horizontal position, vertical position, energy control, and intensity control of the charged particle irradiation beam. Optionally, the charged particle beam is additionally controlled in terms of timing. Timing is coordinated with patient respiration and/or patient rotational positioning. Combined, the system allows multi-axis and multi-field charged particle irradiation of tumors yielding precise and accurate irradiation dosages to a tumor with distribution of harmful proximal distal energy about the tumor.