Abstract:
A carburetor includes a main body defining a bore, a main passage and a venturi defined within the bore, and a fuel nozzle carried by the main body and including a fuel nozzle outlet communicating with the venturi. The carburetor may also include a valve member translatable across an axis of the bore, such that in a closed state, the valve member closes the main passage but maintains the venturi at least partially open. The carburetor may also include a needle valve disposed at an end of the fuel nozzle substantially opposite of the fuel nozzle outlet to variably control flow of fuel into a fuel nozzle inlet, and a needle valve transmission may be coupled between a throttle shaft and the needle valve to convert rotation of the throttle shaft to translation of the needle valve.
Abstract:
In order to improve a limiter cap (300; 300′) for limiting the adjustability of at least two set screws or valves (200), which are arranged side by side, with each set screw or valve (200) comprising at least one retaining nose or stop leg (240), extending in the transition area between the screw head (210) and the screw needle or valve needle (220) in a ring shape around the external circumference of the screw needle or valve needle (220), in particular for limiting the adjustment of the fuel flow through a carburetor (400; 400′), in such a way that inadvertently pushing the limiter cap onto the screw needle thus prematurely blocking said screw needle, already at the time when the (basic) carburetor adjustment takes place, is safely prevented, it is proposed that the limiting cap (300; 300′) is attached to each of the set screws (200) in particular in a way so as to be self-attaching, and/or in particular such that the limiter caps (300; 300′) engage each other with locking action, and/or without any further auxiliary means or without any further supplementary part.
Abstract:
A carburetor for an internal combustion engine is provided and includes at least one adjusting screw disposed in a housing for regulating the fuel/air mixture. The adjusting screw is screwed into a bore of the carburetor housing. The adjusting screw is embodied as a cheese head screw, whereby one end of the screw is provided with two slots that are cross-shaped relative to one another and extend over the diameter of the cheese head screw.
Abstract:
A carburetor comprising four distinct features providing improved performance: A sculpted chamber comprising D-shaped configuration; a fuel flow interference needle multiply comprised with bevel zones; easily accessible needle advancement and retraction means; and a centrally disposed auxiliary fuel jet aperture emission site.
Abstract:
A carburetor comprising four distinct features providing improved performance: A sculpted chamber comprising D-shaped configuration; a fuel flow interference needle multiply comprised with bevel zones; easily accessible needle advancement and retraction means; and a centrally disposed auxiliary fuel jet aperture emission site.
Abstract:
An improved fuel air mixture apparatus which enhances the degree of mixing of fuel with air. The fuel-air mixture device includes a primary air passage having an inlet, an adjustable throttle and an outlet; a secondary air passage having an inlet and an outlet to the primary air passage between its adjustable throttle and its outlet; a nozzle having an orifice opening into the secondary air passage for introducing a flow of fuel therein; a needle arranged co-axially of the nozzle with its small diameter at least normally extending from the orifice into the secondary air passage, the needle being axially moveable to provide variability of the orifice and control of the fuel flow; a control device for directly linking or controlling the position of the needle to the position of the adjustable throttle in the primary air passage for adjustment of the orifice of the nozzle. The arrangement is such that the fuel flow from the nozzle is matched to the position of the adjustable throttle and the fuel flowing from the orifice towards the small diameter end of the needle mixes with air flowing through the secondary passage prior to mixing with the air flowing through the primary air passage.
Abstract:
Improvement in peanut clip limiter cap holder, wherein the clip spring legs are interconnected by a spring web that flexes to accommodate flexing of the clip legs free ends during insertion of the associated limiter caps into the retaining clip, and prolongs the effective friction grip service life of the clip. Optional detent dimples on the clip spring legs and cooperative limiter cap grooves enhance yieldable retention of the caps in the clip and the clip on the needle valves. When the peanut clip is used to install only a single limiter cap on a single needle valve, a dummy stud is mounted to the carburetor in the vacant needle valve position and the stud head occupies the vacant limiter cap position in the clip. An improved needle valve is made as an assembly of a lathe-turned tip/shank part and a separate precision die cast head part. The head part has the needle spring stop flange, the fluted spline portion, the limiter cap barb retention structure, and a cavity telescopically receiving a shank stem to rotationally drive couple the shank and head parts in assembly. The shank stem is press fit or cast into the head cavity to permanently join the shank and head parts in fixed relationship, or preferably the head cavity cooperates with the shank stem and a cross arm thereof to form a releasable, telescopic, quarter-turn bayonet coupling. The needle valve spring biases the bayonet coupling to fully locked condition. Coupling axial lost motion insures lock-on of cap retention barbs on the head of the "shorter" needle, and thus final installation lock-on of both limiter caps while being held by the clip. "Side-play" between head and shank parts isolates the needle shank part from adverse needle bending moments.
Abstract:
A carburetor adjustment screw apparatus includes an adjusting screw (2) having a shaft (7) in screw threaded engagement with a carburetor body (4) and a head (8) by which the shaft may be rotated. A generally tubular open-ended housing (10) surrounds the head of the screw and a ring (11) is rotatably mounted in the open end of the housing. Stop means (19/20) limit the angular range of rotation of the ring. A plug (12) is mounted in the ring and engages the screw such that rotation of the plug effects corresponding rotation of the screw. The plug is movable relative to the ring between a first axial position wherein the plug can rotate independently of the ring and a second axial position wherein the plug engages the ring for co-rotation therewith such that the angular range of rotation of the plug is limited to the angular range of rotation of the ring.
Abstract:
The invention is directed to a spray cooler for regulating the temperature of superheated steam with a stream of cooling water. Its primary inventive feature is directed to a throttle area which has a continuously widening cross section disposed on a piston rod and arranged between the cooling water inlet opening and the nozzles of the spray cooler. The throttle area serves to regulate the pressure the cooling water in proportion to the movement of the piston carrying the throttle.
Abstract:
A carburetor fuel adjusting limit device that facilitates control of the quantity of fuel that flows from the fuel chamber to an air intake port of a carburetor by making it possible for the user to adjust a fuel adjustment valve within the limits defined by emission control regulations. The limit device has a cap that comprises an engagement area to engage a valve extension of the fuel adjustment valve and radially extending appendages to limit rotation. The construction of the engagement area, which includes axial and radial locks, enables the cap to be pressed onto the valve extension with a relatively low amount of force. The fuel adjustment valve includes a screw head attached to the valve extension and constructed to break away from the valve extension at a torque that exceeds about 8 kg-cm. A retainer is utilized to retain the cap in a disengaged position adjacent the valve extensions. Once the cap is pressed onto the valve extension the cap and the fuel adjustment valve rotate as a unit.