Abstract:
The present invention relates to a welding apparatus and a welding method for a nuclear fuel skeleton which is fabricated by welding guide tubes for power control rods and a instrumentation tube for measuring fuel to spacer grids having a plurality of cells, into which fuel rods are inserted. The automatic robot spot welding apparatus comprises: a welding bench including clamping frames, which are uniformly arrayed and have receiving portions for the spacer grids, and have, at both ends of the welding bench, fixing plates for the guide tubes and the instrumentation tube which are inserted into the spacer grids; a robot moving on a running rail, which is arranged in parallel to the welding bench, and having a welding gun for welding the spacer grids with the guide and instrumentation tubes; guide tube electrodes for being inserted into the guide tubes for the spot welding; a instrumentation tube electrode for being inserted into the instrumentation tube; and a controller having an apparatus control block and a robot control block for controlling components based on a program stored therein.
Abstract:
A method for metallurgically joining a tube to a member. A tube having a flange is obtained, and a member is obtained. The tube and the member are positioned with the flange contacting the member directly and/or indirectly through an intervening welding/brazing joining material. The flange and/or the member is segmented and their contact is a segmented contact at spaced-apart contact areas between the flange and the member. A resistance welding/brazing current path is created,through the tube and the member at a first contact area creating a first weld/braze zone which includes at least some of the flange and at least some of the member. Then, a resistance welding/brazing current path is created through the tube and the member at a different second contact area creating a second weld/braze zone which includes at least some of the flange and at least some of the member.
Abstract:
Disclosed is a novel electric joining method and apparatus that can overcome the defects associated with the prior art while taking advantage of the technology for the pulse excited sintering process such as spark plasma sintering process or the hot-press joining process. According to the present invention, an electric joining apparatus for joining a plurality of members to be joined at the joining surfaces thereof, comprises: a pair of current-currying electrodes 13, 16 capable of contacting with the members so as to apply electricity to the members; a power supply 17 connected to the pair of energizing electrodes for supplying the energizing electrodes with at least either one of a DC current or a pulsated current; and a pressurizing unit 14 for compressing each of the pair of electrodes against the joining surfaces, wherein the pair of members are sandwiched between the energizing electrodes and applied with at least either one of the DC current or the pulsated current from the power supply under a desired pressure, thus to be joined, without using a die made of graphite.
Abstract:
A resistance welding method preventing a bonded part raised once to a high temperature from being cooled to a martensite phase in texture when bonding carbon steel having a carbon content of at least that of medium carbon steel by resistance welding and as a result preventing a drop in toughness and embrittlement of the bonded part, cracking of the bonded part, and aging cracks, comprising running a current through a common rail unit and holder formed by carbon steel having a carbon content of 0.35 wt % to bond the clamped parts and controlling the current run through the common rail unit and holder and current carrying time to slowly cool the bonded part raised to a high temperature for annealing treatment, whereby the Vicker's hardness can be lowered to less than 600 HV and the majority of the texture of the bonded part can be made the medium stage phase.
Abstract:
An improved battery pack is proposed. The battery pack includes a housing, and first and second cells disposed in the housing, the first cell having a radius and a periphery. In addition, the battery pack includes a metal strap connecting the first and second cells, the strap having an end disposed over the first cell and a portion of the periphery, and two contact protrusions contacting the first cell, wherein distance between the strap end and the overlaped periphery is greater than the radius of the first cell.
Abstract:
A method for metallurgically joining a tube to a member. A tube having a flange is obtained, and a member is obtained. A welding/brazing electrode wheel is obtained having an axis of rotation and having a rim. The tube and the member are positioned with the flange contacting the member directly and/or indirectly through an intervening welding/brazing joining material. The rim of the electrode wheel is positioned in direct contact with the flange. A resistance welding/brazing current path is created through the flange and the member using at least the electrode wheel creating a seam weld/braze zone which includes at least some of the flange and at least some of the member. During the current path creation step, the electrode wheel is rotated about the axis of rotation.
Abstract:
A method for metallurgically joining a tube to a member. A tube is obtained having a longitudinal axis and having an end portion, wherein the end portion includes a fold, and wherein the fold includes longitudinally-spaced-apart first and second fold portions. A member (such as, but not limited to, a plate or a second tube) is obtained. The tube and the member are disposed with the end portion contacting the member. A resistance welding current path is created through the tube and the member proximate the end portion and the end portion is relatively longitudinally moved deformingly against the member creating a weld zone which includes at least some of the end portion and at least some of the member.
Abstract:
A method for metallurgically attaching a tube to a member. A member having a wall is obtained. The wall includes opposing first and second sides and includes a partial extrusion extending above the first side. The partial extrusion has a through hole. A tube having an end portion is obtained. The tube and the member are positioned with the end portion contacting the second side of the wall proximate the partial extrusion. A resistance welding current path is created through the tube and the member proximate the end portion and the partial extrusion, and the end portion is relatively moved into and deformingly against the partial extrusion creating a weld zone which includes at least some of the end portion at least some of the partial extrusion.
Abstract:
Disclosed is a novel electric joining method and apparatus that can overcome the defects associated with the prior art while taking advantage of the technology for the pulse excited sintering process such as spark plasma sintering process or the hot-press joining process. According to the present invention, an electric joining apparatus for joining a plurality of members to be joined at the joining surfaces thereof, comprises: a pair of current-currying electrodes 13, 16 capable of contacting with the members so as to apply electricity to the members; a power supply 17 connected to the pair of energizing electrodes for supplying the energizing electrodes with at least either one of a DC current or a pulsated current; and a pressurizing unit 14 for compressing each of the pair of electrodes against the joining surfaces, wherein the pair of members are sandwiched between the energizing electrodes and applied with at least either one of the DC current or the pulsated current from the power supply under a desired pressure, thus to be joined, without using a die made of graphite.
Abstract:
A bipolar electrolytic cell can include, as a manifold, a spiral manifold assembly. This spiral manifold assembly will comprise a first outer assembly member, a second outer assembly member and a center assembly member. The overall structure can provide reduced loss of metal or gas and minimal loss of electrical current during an electrolytic process.