Abstract:
An electrically driveable vehicle, in particular a rail vehicle, includes an intermediate DC circuit, an in-vehicle, three-phase on-board electrical system fed by the intermediate DC circuit, at least one drive motor fed by a converter, and at least one coolant pump for pumping a coolant that cools the converter. In addition to the in-vehicle three-phase on-board electrical system, the vehicle also has a second on-board electrical system. The at least one coolant pump is connected to the second on-board electrical system.
Abstract:
A device and a method are disclosed for direct current voltage power supply to a traction system by means of converters from different alternating current or direct current voltages available on a power supply line. The power supply device is supplied with power by means of a first power supply element and a second power supply element connected to the power supply line. In this supply device the first power supply element is connected to the primary winding of the power supply transformer by a first connection element. The second power supply element is connected either to the power supply terminal of the traction system or to the mid-point of the series converters by a second connection element.
Abstract:
A system for powering a multicurrent locomotive having 2N motors where N is greater than or equal to 2, the system comprising 2N pairs of voltage converters respectively associated with the 2N motors, each motor M.sub.i being powered by means of an inverter connected to the terminals of a parallel capacitor. When the locomotive is powered with AC, then each of the pairs forms a 4-quadrant converter in which the two portions are implemented by the secondary winding of a transformer whose primary winding is connected directly to the terminals of the AC power supply. When the locomotive is powered with DC, the switches serve to use the voltage converters either as voltage-lowering choppers or as voltage-raising choppers. The power supply system is designed in such a manner that in the event of a converter or an inverter failing, it suffices to isolate the failed element to conserve the functions that remain. Availability is thus considerably improved since even in the event of a failure, tractive effort is conserved from at least three motors.
Abstract:
The present invention relates to supplying a load either from a direct-current source or from an alternating-current source. The power unit, according to the invention, is characterized in that it consists of a single conversion unit (CV) having unidirectional semi-conductor power components forming switches (I1, I2, I3, I4) controlled in appropriate fashion by a logic control in such a manner as to ensure the functioning of the conversion unit (CV) either in a chopper mode, or in a rectifier mode when the load functions to draw power, or to ensure energy regeneration when the load functions in a generating mode. The present invention has application particularly for supplying direct-current motors used in dual-current railroad locomotives.
Abstract:
An electrically driveable vehicle, in particular a rail vehicle, includes an intermediate DC circuit, an in-vehicle, three-phase on-board electrical system fed by the intermediate DC circuit, at least one drive motor fed by a converter, and at least one coolant pump for pumping a coolant that cools the converter. In addition to the in-vehicle three-phase on-board electrical system, the vehicle also has a second on-board electrical system. The at least one coolant pump is connected to the second on-board electrical system.
Abstract:
A locomotive propulsion system onboard a locomotive platform includes a traction motor, a propulsion electrical storage device, an ancillary electrical storage device, and a controller. The propulsion electrical storage device is electrically connected to the traction motor via a propulsion circuit, and the ancillary electrical storage device is electrically connected to the traction motor via an ancillary circuit. The controller is configured to direct the ancillary electrical storage device to supply electric current to the traction motor via the ancillary circuit to power the traction motor during an elevated demand period. At an end of the elevated demand period, the controller is configured to control the ancillary circuit to stop conducting electric current from the ancillary electrical storage device and to direct the propulsion electrical storage device to supply electric current to the traction motor via the propulsion circuit to power the traction motor.
Abstract:
Four thyristors are interconnected into an AC bridge circuit. With an AC source connected across inputs to the bridge circuit, a DC motor is connected across outputs of the bridge circuit while the thyristors are operated in the phase control mode to control the power supply to the motor from the AC source. In the absence of the AC source the DC motor is serially connected to a battery across the outputs of the bridge circuit with the thyristors operated in the chopping control mode. Also, in the presence of the AC source, a rectifier bridge including thyristors and diodes can be connected across the battery to exclusively charge it from the AC source.