Abstract:
A method of providing motion compensation of a subsea package with a synthetic rope comprising attaching the synthetic rope to the subsea package, supporting a first gripper with a wire rope from a winch capable of motion compensation control characteristics and gripping the synthetic rope with the first gripper, supporting a second gripper with a second wire rope, and repeating the following sequence: lowering the first gripper, the synthetic rope, and the subsea package a first distance, gripping the synthetic rope with the second gripper, releasing the first gripper from the synthetic rope, raising the first gripper the first distance, gripping the synthetic rope with the first gripper, releasing the second gripper from the synthetic rope, such that when the subsea package is lowered proximate the subsea landing location the winch capable of operating with motion compensation characteristics can operate to compensate for the vessel motion and smoothly lower the subsea package to the subsea landing location.
Abstract:
An offshore structure is separated into an upper structure and a lower structure. Part or whole of the lower structure is kept in an upright standing state in water. The upper structure is moved to above the lower structure kept in the upright standing state. A uniting step includes one or both of raising the lower structure to arrange the lower structure on a lower side of the upper structure and lowering the upper structure to arrange the upper structure on an upper side of the lower structure by submerging part of a carrier vessel on which the upper structure is mounted while being held by a pair of arm-shaped structures of the carrier vessel and integrating the lower structure with the upper structure. In this way, an offshore structure is moored safely at an offshore installation site without using a crane vessel.
Abstract:
The present embodiments relate to launch and recovery systems for a remotely operated vehicle. The embodiments eliminate or minimize the need for load lines, and provide virtually unlimited excursion distances for remotely operated vehicles, limited only by the amount of tether available at the launch point. Further, the embodiments allow for extended deployments of ROVs by allowing recharging of a tether climbing component while submerged. The system can include a launch and recovery assembly, a tether climbing component, and a remotely operated vehicle attached to a remotely operated vehicle tether. The launch and recovery assembly deploys the remotely operated vehicle and the tether climbing component overboard, and the remotely operated vehicle is configured for tethered operation while maintaining the tether climbing component at a desired depth.
Abstract:
This invention relates to a vessel having an extendable and retractable cursor frame assembly for deploying other vessels into a body of water. The retractable cursor frame assembly on the main vessel may be retracted and secured on a module of the main vessel as the main vessel is in transit. When another vessel is to be deployed into the body of water from the main vessel, the cursor frame assembly is then extended into the body of water to facilitate the launch of the other vessel.
Abstract:
Offloading cargo from a cargo vessel and delivering the cargo to a cargo recipient, or loading cargo onto the cargo vessel from a cargo supplier, may be performed using a cargo vessel which is spread moored at sea to a plurality of mooring points for mooring the cargo vessel in a desired orientation. Alternatively, the cargo vessel may be rotatably moored. Tubing may be provided and configured to be connected to the vessel for fluid communication between the vessel and the cargo recipient or the cargo supplier, and may comprise a first portion configured to be connected to the cargo vessel and a second portion configured to be connected to the cargo recipient or the cargo supplier. A semi-submersible unit may be operable to travel across the sea and carry part of the tubing from a stand-by location to a position adjacent to the cargo vessel, so as to allow an end of the first portion of the tubing to be connected the cargo vessel for offloading or loading the cargo. The unit may have at least one lifting and handling device, which when the unit is positioned adjacent to the cargo vessel, may be operable for arranging the end of the first portion of the tubing at or near a manifold on the cargo vessel for connection thereto.
Abstract:
This invention relates to a vessel having an extendable and retractable cursor frame assembly for deploying other vessels into a body of water. The retractable cursor frame assembly on the main vessel may be retracted and secured on a module of the main vessel as the main vessel is in transit. When another vessel is to be deployed into the body of water from the main vessel, the cursor frame assembly is then extended into the body of water to facilitate the launch of the other vessel.
Abstract:
The invention relates to a marine load raising and lowering system for use on a vessel, comprising: i. a first winch comprising first driving means for raising or lowering a first cable from the first winch; ii. a second winch comprising second driving means for raising or lowering a second cable from the second winch; iii. operating means connected to the first and second driving means of respectively the first and second winch for synchronising the driving means so as to perform synchronous raising or lowering of the first and second cable; iv. a load connector; wherein the first and second cable are both connected to the load connector with a respective terminal end of the first and second cable, wherein the system further comprises a first tension equalizing mechanism adapted to equalize the tension in the first and second cables, said first tension equalizing mechanism having interconnected first cable-engaging members to engage with the first and second cable, wherein said first cable-engaging members are movable relative to a first reference structure to be mounted on the vessel, and wherein said first tension equalizing mechanism is configured to move the first cable-engaging members under the effect of a difference in tension in the first and second cable so as to equalize said tensions.
Abstract:
A craft includes a rigid hull (1) that consists of a V-shaped bottom (5) and a bridge (4) on which a load can rest. The hull includes plating consisting of compartmentalized pneumatic floats (2), the rear compartments (32) of which are combined with an inflation and deflation system so as to vary the buoyancy of the craft. The craft also includes a submergible hull (1), the central cavity (9) of which is formed between the bottom (5) and the bridge (4) and is open at the rear so as to be automatically filled or emptied, the central cavity (9) containing at least one bag (10) that is combined with an inflation and deflation system enabling the buoyancy to be varied and consequently the level of immersion of the stern (7) to be changed as needed.
Abstract:
A subsea payload such as an AUV (autonomous underwater vehicle) or an AUV garage is lifted from an underwater location by flying a latch unit through the water to the payload. The latch unit carries a lift line toward the payload. The latch unit is then attached to the payload and the payload is lifted using tension applied through the lift line via the latch unit. The latch unit can also be used on a lift line to lower a payload and then to release the payload at an underwater location. The lift line is supported by a heave-compensating winch on a surface vessel that effects z-axis movement of the latch unit. The winch maintains tension on the lift line to prevent the lift line falling on the payload. Movement of the latch unit on x- and y-axes is effected by on-board thrusters.
Abstract:
The invention relates to a subsea marine load raising and lowering system (1) for use on a vessel, preferably a vessel for laying an offshore pipeline, which system comprises first and second winches (2, 6) for raising or lowering first and second cable portions (4, 8) connected via an equalizing sheave (11), to the axle (12) of which a load connector (13) is connected. The system comprises operating means to perform synchronous raising or lowering of the cable portions. The system further comprises overload protection systems provided at both winches, and a safety assembly (15) preventing any substantial further movement of the cable portions (4, 8) in case the cable portions do not operate synchronously, comprising a structure (15a) mounted to the axle (12) of the equalizing sheave (11) having passages (15c) for the cable portions and further comprising stops (15b) arranged on each cable portion above and in the vicinity of the structure (15a). The safety assembly is arranged such that one of the stops will abut the structure (15a) upon relative movement of first and second cable portion (4, 8) such that the other cable portion is subjected to an increased tension and the overload protection system of that other cable portion will enter into force.