摘要:
In this application is described substrates for high-throughput assays of clostridial neurotoxin proteolytic activities. Two types of substrates are described for use in assays for the proteolytic activities of clostridial neurotoxins: (1) modified peptides or proteins that can serve as FRET substrates and (2) modified peptides or proteins that can serve as immobilized substrates. In both types a fluorescent molecules is present in the substrate, eliminating the requirement for the addition of a fluorigenic reagent. The assays described can be readily adapted for use in automated or robotic systems.
摘要:
The present invention provides clostridial toxin substrates useful in assaying for the protease activity of any clostridial toxin, including botulinum toxins of all serotypes as well as tetanus toxins. A clostridial toxin substrate of the invention contains a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor.
摘要:
The present invention provides clostridial toxin substrates useful in assaying for the protease activity of any clostridial toxin, including botulinum toxins of all serotypes as well as tetanus toxins. A clostridial toxin substrate of the invention contains a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence that includes a cleavage site, where the cleavage site intervenes between the donor fluorophore and the acceptor and where, under the appropriate conditions, resonance energy transfer is exhibited between the donor fluorophore and the acceptor.
摘要:
Modified toxins including botulinum toxin or tetanus toxin coupled to polyethylene glycol, pharmaceutical compositions of modified toxins, and methods for their use are provided. The methods include treating inappropriate muscle contraction, and treatments for cosmetic purposes.
摘要:
The present invention includes recombinant proteins derived from Clostridium botulinum toxins. In particular, soluble recombinant Clostridium botulinum type A, type B and type E toxin proteins are provided. Methods which allow for the isolation of recombinant proteins free of significant endotoxin contamination are provided. The soluble, endotoxin-free recombinant proteins are used as immunogens for the production of vaccines and antitoxins. These vaccines and antitoxins are useful in the treatment of humans and other animals at risk of intoxication with clostridial toxin.
摘要:
The invention features a polypeptide complex synthesized by bacteria of the genus Clostridia that contains the serotype E botulinum neurotoxin and five neurotoxin associated polypeptides having molecular weights of about 118, 80, 65, 40, and 18 kDa. respectively. The complex is useful in the treatment of diseases or conditions that are caused by excessive release of acetylcholine from presynaptic nerve terminals.
摘要:
In this application is described substrates for high-throughput assays of clostridial neurotoxin proteolytic activities. Two types of substrates are described for use in assays for the proteolytic activities of clostridial neurotoxins: (1) modified peptides or proteins that can serve as FRET substrates and (2) modified peptides or proteins that can serve as immobilized substrates. In both types a fluorescent molecules is present in the substrate, eliminating the requirement for the addition of a fluorigenic reagent. The assays described can be readily adapted for use in automated or robotic systems.
摘要:
Natural and modified neurotoxins and isolated neurotoxin compositions are described. The neurotoxins may include one or more structural modifications, wherein the structural modification(s) alters the biological persistence, such as the biological half-life and/or a biological activity of the modified neurotoxin relative to an identical neurotoxin without the structural modification(s). In one embodiment, methods of making the modified neurotoxin include using recombinant techniques. In some embodiments, methods of using the modified neurotoxin to treat conditions include treating various disorders, neuromuscular ailments and pain.
摘要:
The present invention provides a method of determining clostridial toxin activity by (a) contacting with a sample a cell containing a clostridial toxin substrate that includes a donor fluorophore; an acceptor having an absorbance spectrum overlapping the emission spectrum of the donor fluorophore; and a clostridial toxin recognition sequence containing a cleavage site that intervenes between the donor fluorophore and the acceptor, where resonance energy transfer is exhibited between the donor fluorophore and the acceptor under the appropriate conditions; (b) exciting the donor fluorophore; and (c) determining resonance energy transfer of the contacted cell relative to a control cell, where a difference in resonance energy transfer of the contacted cell as compared to the control cell is indicative of clostridial toxin activity.
摘要:
An active or passive vaccine utilizing purified non-toxic mutant TcdB toxins from Clostridium difficile for humans and animals against infections caused by C. difficile and/or C. sordellii. Persons most potentially affected by C. difficile infections include hospitalized patients, infants, and elderly persons. The TcdB toxin mutant of the vaccine preferably lacks the toxicity of a native C. difficile TcdB toxin. A serum comprising antibodies raised to the TcdB toxin mutant is also available for treating humans or animals against C. difficile infections. The serum may be used in a method for conferring passive immunity against C. difficile. Antibodies to the TcdB toxin mutant may be used in diagnostic tests or in treatments to clear TcdB toxin from bodily fluids. The mutant TcdB toxin may be produced by recombinant methods using cDNA encoding the toxin, the cDNA contained for example in a plasmid or host cell.