摘要:
Heavy crude oil containing at least 1% by weight water is hydrotreated and upgraded while being produced downhole in a production well. During production the heavy crude oil containing water is subjected to sonic energy at a low frequency of 400 Hz to 10 kHz downhole in the presence of a metal hydrogenation catalyst that causes the water in the crude oil to react and form hydrogen which then hydrotreats and upgrades the heavy crude oil during production. In another embodiment, if the heavy crude oil does not contain water, the hydrogen may be formed in-situ by contacting the heavy crude oil downhole with a chemical compound comprising ammonia, hydrazine and formic acid that in the presence of a metal hydrogenation catalyst and sonic energy causes the chemical compound to react and form hydrogen which then hydrotreats the heavy crude oil during production. Suitable catalysts include nickel on zinc dust, platinum on carbon and palladium on carbon, preferably nickel on zinc dust. The hydrotreated and upgraded heavy crude oil has improved properties making it easier to refine and transport by pipeline. The upgrading includes reducing the amount of asphaltenes and resins in the heavy crude oil and increasing the amount of aromatics and saturates.
摘要:
Low value hydrocarbons can be upgraded by contact with the products formed during irradiation of a hydrogen donor and water using microwave energy in the presence of at least one plasma initiator.
摘要:
Low value hydrocarbons can be upgraded by contact with the products formed during irradiation of a hydrogen donor using microwave energy in the presence of at least one plasma initiator.
摘要:
A method is described for the preparation of chalcogenides of ruthenium, rhodium, osmium and iridium transition metals of the Periodic Table of the Elements which comprises mixing in the absence of an aqueous solvent a Group VIII transition metal salt with a source of chalcogenide, said chalcogenide being selected from the group consisting of sulfur, selenium, tellurium and mixtures thereof, yielding a precipitate of the formula MX.sub.y wherein M is selected from the group consisting of ruthenium, rhodium, osmium and iridium, X is sulfur, selenium, tellurium and mixtures thereof and y is a number ranging from about 0.1 to about 3, preferably 0.1 to about 2.5. By the practice of the nonaqueous synthesis technique, Group VIII chalcogenides are prepared which are finely divided, have a high surface area, small particle size and small crystallite size which are also free of excess sulfur, water and/or hydrolysis products. This technique also permits the preparation of a heretofore unobtainable composition, layered stoichiometric osmium disulfide. The precipitates which result as a consequence of the instant process may be cleansed of any anion salt coproduct by any technique common to the art, pumping under vacuum being one such technique, washing with a suitable solvent being another.Compounds of the formula MX.sub.y wherein M, X and y are as defined above, prepared by the low temperature, nonaqueous precipitation technique herein disclosed are superior sulfur-tolerant catalysts in catalytic processes, for example, hydrodesulfurization, hydrodenitrogenation, hydroconversion, hydrogenation.
摘要:
Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and gas oil steam cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline aromatics extraction zone within the battery limits. Feeds to the gas oil steam cracker include hydrotreated gas oil range intermediates from the vacuum gas oil hydroprocessing zone. Furthermore, vacuum residue is processed in a solvent deasphalting unit to produce deasphalted oil as additional feed to the gas oil hydroprocessing zone.
摘要:
In crude oil fractions, fossil fuels, and organic liquids in general in which it is desirable to reduce the levels of sulfur-containing and nitrogen-containing components, the process reduces the level of these compounds via the application of heat, an oxidizing agent and, preferably, sonic energy. The invention is performed either as a continuous process or a batch process, and may further include optional steps of centrifugation or hydrodesulfurization.
摘要:
The phenolic oxygen and/or the thiol sulfur present in the polycyclic aromatic compounds in a heavy oil, such as vacuum pipestill bottoms, crude oil, reduced crude, residual oil or tar sands oil, can be removed as H.sub.2 O and/or H.sub.2 S by contacting the heavy oil with a hydrogen donor at an elevated temperature in the presence of a specified catalyst.