摘要:
Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and gas oil steam cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline aromatics extraction zone within the battery limits. Feeds to the gas oil steam cracker include hydrotreated gas oil range intermediates from the vacuum gas oil hydroprocessing zone. Furthermore, vacuum residue is processed in a solvent deasphalting unit to produce deasphalted oil as additional feed to the gas oil hydroprocessing zone.
摘要:
In some embodiments, the invention is a method of removing sulfur from a hydrocarbon feed using the steps of dissolving metallic sodium in a first solvent, combining the sodium/first solvent solution with a sulfur-free alkane or cycloalkane second solvent, vaporizing the first solvent from sodium/first solvent/second solvent combination to transfer the dissolved metallic sodium into the second solvent, and then combine the resultant liquid with a liquid hydrocarbon feed containing an organosulfur species. The resulting stream is combined with a hydrogen donor. The combination is heated and pressurized to form a liquid hydrocarbon product containing sodium sulfide. The liquid hydrocarbon product containing sodium sulfide is then cooled, and the sodium sulfide is extracted. The extracted sodium sulfide is then processed in a sodium sulfur cell to regenerate the sodium and recycle it to the feed.
摘要:
A method and catalyst for the upgrading of hydrocarbons which employs a multiple component catalyst system to generate hydrogen in situ and to thereby produce, within the hydrocarbons, materials of low molecular weight, and of reduced carbon residue and sulfur content.
摘要:
A method and a product made by treating a sulfur-containing hydrocarbon heavy feed, e.g., heavy crude asphaltene reduction is disclosed herein. The method comprises the steps of: mixing the sulfur-containing hydrocarbon heavy feed with a hydrogen donor solvent and an acidified silica to form a mixture and oxidizing the sulfur in the mixture at a temperature between 50° C. and 210° C., wherein the oxidation lowers the amount sulfur in the sulfur-containing hydrocarbon heavy feed by at least 90%.
摘要:
Heavy crude oil containing at least 1% by weight water is hydrotreated and upgraded while being produced downhole in a production well. During production the heavy crude oil containing water is subjected to sonic energy at a low frequency of 400 Hz to 10 kHz downhole in the presence of a metal hydrogenation catalyst that causes the water in the crude oil to react and form hydrogen which then hydrotreats and upgrades the heavy crude oil during production. In another embodiment, if the heavy crude oil does not contain water, the hydrogen may be formed in-situ by contacting the heavy crude oil downhole with a chemical compound comprising ammonia, hydrazine and formic acid that in the presence of a metal hydrogenation catalyst and sonic energy causes the chemical compound to react and form hydrogen which then hydrotreats the heavy crude oil during production. Suitable catalysts include nickel on zinc dust, platinum on carbon and palladium on carbon, preferably nickel on zinc dust. The hydrotreated and upgraded heavy crude oil has improved properties making it easier to refine and transport by pipeline. The upgrading includes reducing the amount of asphaltenes and resins in the heavy crude oil and increasing the amount of aromatics and saturates.
摘要:
Low value hydrocarbons can be upgraded by contact with the products formed during irradiation of a hydrogen donor and water using microwave energy in the presence of at least one plasma initiator.
摘要:
Low value hydrocarbons can be upgraded by contact with the products formed during irradiation of a hydrogen donor using microwave energy in the presence of at least one plasma initiator.