Abstract:
The invention relates to the conversion of paraffinic hydrocarbon to oligomers of greater molecular weight and/or to aromatic hydrocarbon. The invention also relates to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. Corresponding olefinic hydrocarbon is produced from the paraffinic hydrocarbon in the presence of a dehydrogenation catalyst containing a catalytically active carbonaceous component. The corresponding olefinic hydrocarbon is then converted by oligomerization and/or dehydrocyclization in the presence of at least one molecular sieve catalyst.
Abstract:
The invention relates to the conversion of paraffinic hydrocarbon to oligomers of greater molecular weight and/or to aromatic hydrocarbon. The invention also relates to equipment and materials useful in such conversion, and to the use of such conversion for, e.g., natural gas upgrading. Corresponding olefinic hydrocarbon is produced from the paraffinic hydrocarbon in the presence of a dehydrogenation catalyst containing a catalytically active carbonaceous component. The corresponding olefinic hydrocarbon is then converted by oligomerization and/or dehydrocyclization in the presence of at least one molecular sieve catalyst.
Abstract:
A desulfurization process includes desulfurizing a hydrocarbon fuel using a desulfurizing agent including a support, nickel sulfide on the support, and zinc oxide. The desulfurizing agent is heated to 250° C. or more.
Abstract:
Form ethylene via a method that includes vaporizing elemental sulfur, providing a metal sulfide catalyst, and contacting the metal sulfide catalyst with a mixture of methane and the vaporized elemental sulfur to form ethylene. The mixture has a methane to sulfur molar ratio greater than 1.2:1.0.
Abstract:
The present disclosure relates to oriented photocatalytic semiconductor surfaces which may include photocatalytic capped colloidal nanocrystals (PCCNs) positioned all in the same orientation. The photoactive material may be employed in a plurality of photocatalytic energy conversion applications such as the photocatalytic reduction of carbon dioxide and water splitting, among others. The disclosed oriented PCCNs, within the oriented photoactive material, may also exhibit different shapes and sizes, and higher efficiency in a light harvesting process. Having all the PCCNs oriented at the same angle and dipole moment may allow the light to interact with the dipole at an increased efficiency, to predict the polarity of the light or a more efficient interaction with the nanocrystals substrate, and therefore, increasing the harvesting efficiency by controlling different parts of the light spectrum in the same system.
Abstract:
Methods for improving selectivity in heterogeneous catalysts, and products thereof, are disclosed. In exemplary embodiments, multifunctional oxygenates may be selectively converted to value-added products through reaction at a single functional position. Addition of a self-assembled monolayer (SAM), or SAM-like structures to a supported metal catalyst is also disclosed.
Abstract:
Technologies are generally described for methods and systems of forming a palladium sulfide film on a substrate including flexible substrate. A palladium sulfide precursor may be applied to the substrate. The palladium sulfide precursor may comprise a palladium organothiolate. The palladium sulfide precursor may be heated under reaction conditions sufficient to decompose the palladium sulfide precursor to form the palladium sulfide film or patterns, the latter using various lithography techniques.
Abstract:
This invention provides a fine particle composite comprising fine particles of a sulfide or sulfide complex comprising at least one element selected from the group consisting of molybdenum (Mo), rhodium (Rh), ruthenium (Ru), and rhenium (Re) and conductive fine particles via a step of preparing a solvent mixture from a compound containing conductive carbon powder, at least one compound containing an element selected from among molybdenum (Mo), rhodium (Rh), ruthenium (R), and rhenium (Re), and sulfur (S) and a step of conducting a hydrothermal or solvothermal reaction at a pressure and temperature that convert the solvent mixture into a supercritical or subcritical water or solvent.
Abstract:
A supported catalyst includes: a particulate first carbon material; and a particulate second carbon material supporting a catalyst, having a smaller center particle diameter than the first carbon material, and adsorbed on a surface of the first carbon material.