Abstract:
A process for producing distillate boiling range streams that are low in both sulfur and aromatics. A distillate feedstock is treated in a first hydrodesulfurization stage in the presence of a hydrogen-containing treat gas and a hydrodesulfurization catalyst, thereby resulting in partial desufurization of the stream. The partially desulfurized distillate stream is then treated in a second hydrodesulfurization stage, also in the presence of a hydrogen-containing treat gas and a hydrodesulfurization catalyst. The hydrogen-containing treat gas is cascaded from the next downstream reaction stage, which is an aromatics hydrogenation stage.
Abstract:
The invention is a process for decreasing the acidity of an organic acid containing petroleum oil, comprising contacting said petroleum oil containing organic acids with an effective amount of an alcohol and an effective trace amount of a base selected from Group IA and IIA metal carbonates, hydroxides, phosphates, biphosphates and mixtures of a hydroxide and phosphate and/or biphosphates at a temperature and under conditions sufficient to form the corresponding ester of said alcohol.
Abstract:
A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50%. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.5. The hydrodesulfurization catalyst components include a powdered refractory oxide and transition metal catalyst compounds. Alternatively the hydrodesulfurization catalyst components may be impregnated into the monolithic honeycomb catalyst bed itself. Preferable hydrodesulfurization catalyst components include a Group VIII metal containing compound and a Group VIB metal containing compound. Alternatively the hydrodesulfurization catalyst components may further include a phosphorous promoter.
Abstract:
For converting hydrocarbons: step a) treating a hydrocarbon feed with hydrogen in at least one three-phase reactor (1), containing ebullated bed hydroconversion catalyst; a step b) passing effluent from step a) to a separation zone (2) to recover a fraction F1 containing at least a portion of gas, gasoline and atmospheric gas oil contained in the effluent from step a), and a fraction F2 containing compounds with boiling points of more than that of the atmospheric gas oil; step c) hydrodesulphurizing at least a portion of fraction F1; and step d) passing at least a portion of fraction F2 to catalytic cracking section (6).
Abstract:
A process for the hydrodesulfurization of a cracked naphtha stream is disclosed where very little of the valuable olefins are saturated. The process is a two staged process wherein the H2S is removed between the stages to prevent recombinant mercaptans formation. Because the H2S is removed between the stages milder conditions can be used in the second stage polishing reactor to achieve the same desulfurization levels with less olefin loss.
Abstract:
A process for the hydrodesulfurization of a cracked naphtha stream is disclosed where very little of the valuable olefins are saturated. The process is a two staged process wherein the H2S is removed between the stages to prevent recombinant mercaptans formation. Because the H2S is removed between the stages milder conditions can be used in the second stage polishing reactor to achieve the same desulfurization levels with less olefin loss.
Abstract:
A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams and the saturation of aromatics over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
Abstract:
The invention is a process for decreasing the acidity of an organic acid containing petroleum oil, comprising contacting said petroleum oil containing organic acids with an effective amount of an alcohol and an effective trace amount of a base selected from Group IA and IIA metal carbonates, hydroxides, phosphates, and mixtures of a hydroxide and phosphate at a temperature and under conditions sufficient to form the corresponding ester of said alcohol.
Abstract:
A novel process for forming hydrocarbon waxes from synthesis gas is disclosed. This invention teaches a process whereby a Fischer-Tropsch wax can be formulated such that the wax softness as defined by ASTM Standard Test Method for Needle Penetration of waxes (ASTM D-1321) can be adjusted to within a region most preferred for end use applications while simultaneously removing undesirable impurities, such as oxygenates (e.g., primary alcohols), olefins, and trace levels of aromatics. In a Fischer-Tropsch reactor, Fischer-Tropsch wax is formed from synthesis gas in a catalyzed reaction. The Fischer Tropsch wax is then subjected to a relatively mild hydroprocessing over a hydroisomerization catalyst under conditions such that essentially no boiling point conversion is obtained, but yet chemical conversions (e.g., hydrogenation and mild isomerization) occur yielding a high purity, hydrocarbon wax product of reduced hardness.
Abstract:
The present invention relates to the use of a catalytic system comprising a metal of group VIII, a metal of group VI, a metal oxide as carrier and suitable quantities of a component selected from a zeolite of the FER type, phosphorous, and a mixture thereof, in upgrading of hydrocarbons boiling in the naphtha range containing sulfur impurities, namely in hydrodesulfurization with contemporaneous skeleton isomerization of olefins contained in said hydrocarbons and/or with reduction of olefins hydrogenation, carried out in a single step.