Abstract:
The invention relates to a method for treating a hydrocarbons charge comprising the following stages, in which: a) the charge is brought into contact with a solvent in order to obtain a deasphalted effluent having a content of asphaltenes below 3000 ppm by weight, b) the deasphalted effluent is cracked in the presence of hydrogen and a hydrocracking catalyst, in a bubbling-bed reactor, so as to convert at least 50 wt. % of the fraction of the deasphalted effluent boiling above 500° C. to compounds having a boiling point below 500° C., c) the effluent from stage b) is fractionated to recover gasolines, kerosene, gas oils and a first residue, and d) at least a portion of this first residue is cracked so as to obtain an effluent comprising gasolines, kerosene, gas oils and a second residue.
Abstract:
A hydrotreatment process is carried out in at least two steps to hydrotreat a heavy hydrocarbon fraction containing asphaltenes, sulphur-containing impurities and metallic impurities, comprising a first hydrodemetallization step and a subsequent second hydrodesulphurization step, in which the hydrodemetallization step comprises one or more hydrodemetallization zones with fixed beds preceded by at least two hydrodemetallization guard zones (A) and (B), also with fixed beds, disposed in series for cyclic use consisting of successive repetition of steps b) and c) defined below. The process comprises the following steps: a) a step in which the guard zones are used together for a period of at most equal to the deactivation time and/or clogging time of one thereof, b) a step during which the deactivated and/or clogged guard zone is short-circuited and the catalyst it contains is regenerated and/or replaced by fresh catalyst, and c) a step during which the guard zones (A) and (B) are used together, the guard zone where the catalyst has been regenerated during the preceding step being reconnected and said step being carried out for a period at most equal to the deactivation and/or clogging time of one of the guard zones. The process is characterized by introducing a quantity of middle distillate, particularly a gas oil, with the feed representing 0.5% to 80% by weight with respect to the feed. The process can comprise a prior hydrovisbreaking step and optionally a final deasphalting step using a solvent.
Abstract:
A process for converting a hydrocarbon fraction includes a step a) for treating a hydrocarbon feed in the presence of hydrogen in at least on three-phase reactor, containing at least one hydroconversion catalyst in an ebullated bed, operating in riser mode of liquid and of gas, the reactor including at least one means located close to the bottom of the reactor for extracting catalyst from the reactor and at least one means located close to the top of the reactor for adding fresh catalyst to the reactor, a step b) for treating at least a portion of the effluent from step a) in the presence of hydrogen in at least one reactor containing at least one hydrotreatment catalyst in a fixed bed under conditions for producing an effluent with a reduced sulphur content, and a step c) in which at least a portion of the product from step b) is sent to a distillation zone from which a gaseous fraction, a gasoline type engine fuel fraction, a diesel type engine fuel fraction and a liquid fraction which is heavier than the diesel type fraction are recovered. The process can also include a step d) for catalytic cracking of the heavy fraction obtained from step c).
Abstract:
A process for converting a heavy hydrocarbon fraction comprises a step a) for treating a hydrocarbon feed in a hydroconversion section in the presence of hydrogen, the section comprising at least one three-phase reactor containing at least one ebullated bed of hydroconversion catalyst operating in riser mode for liquid and for gas, said reactor comprising at least one means for extracting used catalyst from said reactor and at least one means for adding fresh catalyst to said reactor, b) a step for treating fresh catalyst and conditioning the catalyst using a process leading to a gain in the activity of the catalyst during treatment of the feed in said conversion reactor. This process for conditioning the catalyst before adding it to the reactor can comprise a step for impregnating the catalyst with a chemical substance, or a complete sulphurisation step, or a step for adding an additive mixed with the fresh catalyst which is added.
Abstract:
The invention relates to a method for treating a hydrocarbons charge comprising the following stages, in which: a) the charge is brought into contact with a solvent in order to obtain a deasphalted effluent having a content of asphaltenes below 3000 ppm by weight, b) the deasphalted effluent is cracked in the presence of hydrogen and a hydrocracking catalyst, in a bubbling-bed reactor, so as to convert at least 50 wt. % of the fraction of the deasphalted effluent boiling above 500° C. to compounds having a boiling point below 500° C., c) the effluent from stage b) is fractionated to recover gasolines, kerosene, gas oils and a first residue, and d) at least a portion of this first residue is cracked so as to obtain an effluent comprising gasolines, kerosene, gas oils and a second residue.
Abstract:
The invention relates to a process for conversion of hydrocarbons in the presence of at least one catalyst with controlled acidity, characterized in that the level of activity of said catalyst in isomerization of the cyclohexane is less than 0.10 and/or in that the ratio of toluene hydrogenation activity to the cyclohexane isomerization activity is greater than 10.
Abstract:
For converting hydrocarbons: step a) treating a hydrocarbon feed with hydrogen in at least one three-phase reactor (1), containing ebullated bed hydroconversion catalyst; a step b) passing effluent from step a) to a separation zone (2) to recover a fraction F1 containing at least a portion of gas, gasoline and atmospheric gas oil contained in the effluent from step a), and a fraction F2 containing compounds with boiling points of more than that of the atmospheric gas oil; step c) hydrodesulphurizing at least a portion of fraction F1; and step d) passing at least a portion of fraction F2 to catalytic cracking section (6).
Abstract:
The present invention relates to a catalyst comprising an extruded essentially alumina-based support, constituted by a plurality of juxtaposed agglomerates partially in the form of packs of flakes and partially in the form of needles, and comprising at least one catalytic metal or a compound of a catalytic metal from group VIB, and/or optionally at least one catalytic metal or compound of a catalytic metal from group VIII. The catalyst also comprises at least one dopant selected from the group formed by boron, phosphorous, silicon (or a silica different from that subsequently added to the support) and halogens. The invention also relates to its use in a fixed bed reactor, for hydrorefining and hydroconverting hydrocarbon feeds.
Abstract:
Process for converting a hydrocarbon fraction that is obtained from atmospheric distillation of a crude, comprising a vacuum distillation stage (a) of said feedstock that makes it possible to obtain a vacuum distillate and a vacuum residue; a stage b) for treating at least a portion of the vacuum distillate in the presence of hydrogen in at least one reactor that contains at least one fixed-bed hydrotreatment catalyst under conditions that make it possible to obtain a liquid effluent with a low sulfur content; a stage c) for treating at least a portion of the vacuum residue in the presence of hydrogen in at least one triphase reactor that contains at least one ebullated-bed hydrotreatment catalyst; a stage d) in which at least a portion of the product that is obtained in stage b) is sent to an atmospheric distillation zone from which a light fraction and a heavier liquid fraction are recovered; a stage e) in which at least a portion of the product that is obtained in stage c) is sent to an atmospheric distillation zone from which a light fraction and a heavier liquid fraction are recovered; and optionally a catalytic cracking stage f) in which at least a portion of the heavier liquid fractions that are obtained in stages d) and e) are at least partially cracked into lighter fuel-type fractions.
Abstract:
A catalyst and process for hydrotreating and/or hydroconverting heavy metal-containing hydrocarbon feeds, said catalyst comprising a support in the form of beads based on alumina, at least one catalytic metal or a compound of a catalytic metal from group VIB (column 6 in the new periodic table notation), optionally at least one catalytic metal or compound of a catalytic metal from group VIII (columns 8, 9 and 10 of the new periodic table notation), with a pore structure composed of a plurality of juxtaposed agglomerates, each formed by a plurality of acicular platelets, the platelets of each agglomerate being generally radially orientated with respect to each other and with respect to the center of the agglomerate. The catalyst also comprises at least one doping element selected from the group constituted by phosphorus, boron, silicon (or silica which does not belong to that which could be contained in the selected support) and halogens.