Abstract:
A surface skimming munition comprises a hull, a traction propulsion motor positioned in the hull and having a combustion chamber for combustion of a propellant, at least one aft directed nozzle coupled to the hull at a position forward of a center of gravity of the hull and comprising an inlet section and an outlet section, the inlet section in fluid communication with the combustion chamber and the outlet section directing combustion gas received from the combustion chamber through the inlet section in the aft direction, and at least one stabilizing plane coupled to the hull and moveable between a stowed position and a deployed position.
Abstract:
A removable protective nose cover for a submersible structure having a nose section is disclosed. The removable protective nose cover can include a plurality of shell members, each of the shell members having a forward end and an aft end. Each shell member can also be dimensioned to fit adjacent to and around the nose section of the submersible structure and thereby form a protective shell. A central nose member having a locking member can also be included, the locking member being operable to attach the central nose member to each of the forward ends of the shell members. The aft ends of the shell members can be attached to each other using a plurality of attachment clips such that the attachment of the central nose member to each of the forward ends of the shell members and the attachment of the adjacent aft ends of the shell members form the removable protective nose cover for the submersible structure. The attachment clips can be operable to release the plurality of shell members from being held adjacent to the submersible structure when the structure moves through a liquid at a predefined speed.
Abstract:
A high velocity acoustic signal producing underwater shotgun system for dispersing a plurality of relatively small supercavitating projectiles over a wide spatial field at long range using the dynamics of cavity collapse for better target localization in underwater mine clearance. A typical supercavitating projectile design is enhanced to produce a two-staged projectile in order to accomplish this innovation. The first stage of the two stage design allows for the long range firing underwater typical of a supercavitating projectile while the second stage permits the coverage of a wide area with a plurality of small supercavitating projectiles just as the first stage projectile reaches its fixed range. A distinctive feature of the radiated noise from a supercavitating projectile contacting a solid object is used in conjunction with the two stage projectile design to provide a system for underwater mine clearance verification. The distinctive noise signal may also be used in conjunction with an underwater targeting system to help identify, localize and track targets as well.
Abstract:
A drag-stabilized water-entry projectile having a projectile body, one or more drag-stabilizing elements, such as fins, flares or canards, and one or more attachment members adapted to hold the one or more drag-stabilizing elements to the projectile body. The one or more attachment members are coated with a thermally reactive material. A projectile and cartridge assembly has a shear pin, a projectile having a first cutout portion, the cutout portion sized to receive the shear pin. The assembly also includes a sabot configured to house the projectile and having a second cutout portion, the second cutout portion sized to receive the shear pin. The cutout portion is positioned to provide an offset region between an aft end of the projectile and a base of the sabot.
Abstract:
According to an aspect of the invention, there is provided a system for reducing water-entry shock for a projectile entering the water, the system comprising: a first component, the first component being moveable to a target region for which water-entry shock is to be reduced, and arranged to interact with the water, for reducing water-entry shock for a second component; a second component in the form of the projectile, arranged to enter the water in the region for which water-entry shock has been reduced by the first component, functionality of the second projectile component being triggered by the water.
Abstract:
A surface ship, deck-launched anti-torpedo projectile is disclosed. The projectile has a blunt-end nose to create a cavitating running mode. The nose has a gradual, stepped, right-circular cylindrical or conic geometry. In some embodiments, the projectile includes a plurality of tail fins that are dimensioned and arranged to be within the generalized elliptical cavity that shrouds the projectile in the cavitating running mode.
Abstract:
A projectile having a cavity-running mode is provided with a means for changing the diameter of its nose. Based on changed conditions, the diameter of the nose can be actively reduced or increased, as required, to maintain a desired value for the nose-to-body ratio of the projectile.