摘要:
A method of reducing an n-order component of a radial run out (RRO) of a wheel rim is disclosed, wherein an average Y of RRO Y1 and RRO Y2 of the bead seats is obtained around the wheel rim; the peak-to-peak amplitude X of the n-order component of the average Y is obtained; minimum position(s) at which the n-order component becomes minimum is found to determine deep position(s) P on the wheel rim corresponding to the minimum position(s); a corrective tape having a thickness t of 0.1 to 0.5 mm is applied to the bead seat(s) at each deep position P, wherein the length L of the corrective tape is determined by the following precision expression (1) or alternatively simplified expression (2) L0 = R π × n × arcsin ( X t × a × 1.3 ) ( 1 ) L0 = 100 × R × X 360 × t × a × n where 0
摘要:
An automated contact gage system for gaging a workpiece or device has a left spindle, a right spindle and a stylus arm for contacting the workpiece or device in the same Y plane as the probe. A bearing arrangement is used to contact the stylus arm so as to guide and support the stylus arm during contact gaging of the device. The bearing arrangement comprises a spherical race, derived from three spherical elements, contacting a bearing so as to provide for multi-dimensional movement and measurement of movement of the stylus arm. First, and second sensors sense and measure movement of the stylus arm and/or workpiece in two dimensions, while a third sensor senses and measures rotation of the workpiece by the right spindle.
摘要:
A fine feed mechanism (50) and a coarse feed mechanism (60) respectively for minutely and greatly displacing a stylus (12) is provided to a microscopic geometry measuring device (1), so that the respective mechanisms (50, 60) are combinedly actuated for easily controlling the movement of the stylus (12) in a wide range at a short time. Further, a movable balancing portion (53) moving in a direction opposite to a movable driving portion (52) is provided to the fine feed mechanism (50). Since a reaction force caused by the movement of the movable driving portion (52) is cancelled by another reaction force caused by the movement of the movable balancing portion (53) at a fixed portion (51), no mechanical interference is caused between the respective mechanisms (50, 60), thus accurately controlling the movement of the stylus (12).
摘要:
The present invention is a touch probe which can be connected to a computer controlled machine for determining positions of and defining shapes of work pieces, edges, hole centers and contours. The probe due to it design allows for a simpler and effective alternative to previous probes. The probe includes a body, stylus, a shank and an internal assembly. The body contains the internal assembly, which provide signals to a computer. The arrangement of the internal assembly is what makes the present invention simpler to manufacture and allow the probe to be miniaturized. The internal assembly includes an upper circuit board with a Light Emitting Diode (LED), a spring, a spring cap, a stylus mount, a housing, carbide balls, a lower circuit board, a support ring and wires.
摘要:
A repair device for repairing body panels for motor vehicles and the like includes a thin filament with a hook at one end and a Y-shaped body at the other. The device is used by attaching the hook and the body to the respective portions of the body and then tensioning the filament in between to establish a straight line. A body filler then may be added to repair the panel as required using the straight line as a guide. The filament may be cut off and left in the filler for reinforcement.
摘要:
The peripheral surface shape measuring apparatus can simply and accurately measure a peripheral surface shape of a roll-like object. The peripheral surface shape of a roll-like object is measured by moving a displacement amount measuring device which pinches a diameter direction of the roll-like object with a sensor part and a reference point part arranged opposite to each other in the diameter direction of the roll-like object, from one end side to the other end side in an axial direction of the roll-like object by using a moving device.
摘要:
A lens shape measuring apparatus is disclosed, which is capable of identifying a size of an outer-diameter shape of a lens fixing jig by using a measuring element also used for measuring a lend shape. This lens shape measuring apparatus comprising: a lens fixing jig installed in an eyeglass lens to be processed to clamp the eyeglass lens; a lens rotation shaft for clamping and rotating the lens to be processed; a measuring element abutted on a refracting surface of the lens clamped by the lens rotation shaft; a measuring element position switching mechanism for controlling rotation of the measuring element around a rotation shaft roughly parallel to the lens rotation shaft; and a measuring unit for measuring a moving distance of the measuring element in a direction roughly parallel to the lens rotation shaft. This lens shape measuring apparatus also comprises arithmetic control means for moving a tip of the measuring element relatively in the direction roughly parallel to the lens rotation shaft, measuring a distance from a measuring reference position of the measuring element to an abutting position of the same by the measuring unit, and identifying a shape of the lens fixing jig based on a result of the measurement.
摘要:
There is described a metrological instrument for measuring a characteristic of a surface of a workpicce, the instrument comprising a measurement unit and a user-interface unit separate from the measurement unit. The measurement unit has a sensor which follows a measurement path across a surface and means for deriving a signal indicative of a characteristic of the surface as the sensor follows the surface. The user-interface unit has means for providing a user with an indication of a surface characteristic measured by the sensor. The measurement unit and the user-interface unit have communication means for enabling remote communication of information relating to a measurement between the measurement and user-interface units. Preferably, the measurement unit and the user-interface unit can be connected together when not in use in a manner such that the sensor of the measurement unit is protected.
摘要:
A longitudinal profile measuring apparatus including a relative distance meter located on a frame supported by more than two wheels in a row in a direction of a measuring line for measuring relative distance to a target surface, a moving distance meter for measuring moving distance of movement along the measuring line on the target surface, and a data processing unit for finding spatial data, which shows a rough profile of the target surface, along the measuring line from the relative distance measured by the relative distance meter. The data processing unit storing moving distance data associated with relative distance data to the target surface and transforming the relative distance data of the stored data into amplitude corresponding to frequency, multiplying the amplitude corresponding to frequency by a coefficient of correction for allowing the apparatus to have a gain with a desired frequency characteristic for correction, and inverse transforming the corrected amplitude to find the corrected spatial data of the target surface.
摘要:
A probe head 10 and a laser interferometric displacement meter 20 are provided. The probe head supports a probe 2 that is capable of contacting a workpiece 1, that is free to move in the direction of the workpiece, and drives the probe towards the workpiece. The displacement meter measures the displacement of the probe with a high accuracy without contact. The probe head 10 is also provided with a probe shaft 12 with steps 11a, 11b at intermediate portions thereof and air bearings 14a, 14b that support the probe shaft on each side of the steps. The air bearings have a high stiffness in the radial direction, and the probe shaft is made to float by using compressed air, thus the resistance of the shaft to sliding is reduced. In addition, another compressed air is supplied to the location of the step and produces a driving force in the direction of the workpiece due to the difference of cross sectional areas on each side of the step, that provides a very small load within a predetermined range. Thereby, the measuring pressure can be adjusted to a constant very small load without reducing the stiffness of the bearings of the probe, and the measuring pressures can be varied freely. Therefore, a sub-micron accuracy of about 0.1 &mgr;m can be obtained, and the equipment can be made compact and is easily applied to on-machine measurements.