Abstract:
A method of producing high modulus and strength polymer materials includes compressive rolling a semicrystalline polymer material in at least two different axial directions of the material; and axially orienting at least a portion of the compressive rolled material to a draw ratio less than the ultimate elongation or the elongation % at break of the material.
Abstract:
A security marking has a physically unclonable function (PUF) wherein the PUF includes a disordered multilayer photonic crystal structure having an electromagnetic transmission and/or reflection spectrum and/or spectra upon receipt of electromagnetic radiation within a photonic bandgap region of the structure that is unique to the structure.
Abstract:
A method of forming particles for controlled guest agent release includes coextruding first and second polymer materials to form a multilayer polymer composite sheet comprising alternating first and second polymer layers, dividing the multilayer sheet into particles, immersing the particles in a solvent containing the guest agent such that the first layers swell and the guest agent is loaded into the swollen first layers.
Abstract:
A filter includes a fibrous substrate having a plurality of coextruded first polymer material fibers and second polymer material fibers. Each of the first and second fibers are separated from each other and have a rectangular cross-section defined in part by an additional encapsulating polymer material that is separated from the first polymer material fibers and second polymer material fibers. The fibrous substrate has a pore size range of between about 0.1 μm to about 0.4 μm.
Abstract:
A filter includes a fibrous substrate having a plurality of coextruded first polymer material fibers and second polymer material fibers. Each of the first and second fibers are separated from each other and have a rectangular cross-section defined in part by an additional encapsulating polymer material that is separated from the first polymer material fibers and second polymer material fibers.
Abstract:
A security marking has a physically unclonable function (PUF) wherein the PUF includes a disordered multilayer photonic crystal structure having an electromagnetic transmission and/or reflection spectrum and/or spectra upon receipt of electromagnetic radiation within a photonic bandgap region of the structure that is unique to the structure.
Abstract:
A multilayered polymer composite film includes a water-soluble polymer matrix and a plurality of fibers embedded within the water soluble polymer matrix. The fibers include a water insoluble polymer material and at least one of a non-polymeric hydrophobic therapeutic agent or a non-polymeric hydrophobic cosmetic agent incorporated in the water insoluble polymer material. The fibers have a rectangular cross-section, and extend the entire length of the multilayered polymer composite film.
Abstract:
A multilayered polymer composite film includes a first polymer material forming a polymer matrix and a second polymer material coextruded with the first polymer material. The second polymer material forms a plurality of fibers embedded within the polymer matrix. The fibers have a rectangular cross-section.
Abstract:
A multilayer polymer dielectric film includes a stack of coextruded, alternating first dielectric layers and second dielectric layers that receive electrical charge. The first dielectric layers include a first polymer material and the second dielectric layers include a second polymer material different from the first polymer material. The first polymer material has a permittivity greater than the second polymer material. The second polymer material has a breakdown strength greater than the first polymer material. Adjoining first dielectric layers and second dielectric layers define an interface between the layers that delocalizes electrical charge build-up in the layers. The stack has substantially the crystallographic symmetry before and during receiving electrical charge.
Abstract:
A method of forming a confined crystallization multilayer film includes coextruding a plurality of first polymer layers and a plurality of second polymer layer to form a multilayer film wherein each first polymer layer is sandwiched between second polymer layers and axially orienting the multilayer film at a temperature below the melting temperature (Tm) of the second polymer layer and to a thickness such that each first polymer layer forms a high aspect ratio substantially crystalline lamellae.