Abstract:
A method for controlling an electromagnetic brake (1) having a coil carrier (2), a solenoid (5), an armature disc (7), and at least one further force-exerting element. The internal and external poles (3, 4) of the coil carrier each have a front surface with a varying gradient that fits, in a complementary fashion, the front surfaces of the respective internal and external poles (8, 9) of the armature disc. The brake has an air gap (11) which varies in size and forms a stroke region (21). When excitation occurs, the solenoid generates a magnetic force, and the force-exerting element generates an opposing force, wherein the ratio of the solenoid's magnetic force and the opposing force varies at least once between greater than and smaller than one during the movement of the armature disc in the stroke region owing to the variation of the excitation of the solenoid.
Abstract:
A method of increasing a cast-off speed of an armature from a pole of an electromagnet of an electromagnetic actuator, includes the following steps: holding the armature at the pole against a force of a resetting device by maintaining an electric holding current flow through a coil of the electromagnet; and launching the armature from the pole by switching off the holding current; and at a predetermined moment during a release period of the armature from the pole, passing a cast-off current for a predetermined period through the coil. The cast-off current has a polarity opposite to the polarity of the holding current.
Abstract:
An electromagnet which serves particularly to control a fuel injection valve for fuel injection systems in internal combustion engines. The electromagnet includes an inner core of soft-magnetic material, which is surrounded by a magnetic coil. An outer core at least partly surrounds the magnetic coil and has an outer pole located in the same plane as an inner pole of the inner core. On one side of the magnetic coil, between the inner core and the outer core, there is a first annularly embodied and radially magnetized permanent magnet, and on the other side of the magnetic coil there is a second annularly embodied and radially magnetized permanent magnet. Facing the poles, there is an armature, which at one end is joined to a valve needle that has a valve body cooperating with a valve seat, and on its other end forms a first working air gap with the outer pole and a second working air gap with the inner pole. The permanent magnets are poled such that their magnetic fields at the working air gaps extend counter to the electromagnetic field induced by the magnetic coil.
Abstract:
An electrical contactor has a removable coil comprising a contactor housing including a cavity. A pair of fixed coil terminals are mounted to the contactor housing proximate the cavity. A removable coil is removably mountable in the cavity. A pair of coil terminal clips are mounted to the coil. The fixed coil terminals make electrical contact with the coil terminal clips when the removable coil is inserted in the cavity.
Abstract:
An electromagnetic actuator having a coil, stator and an armature where dual parallel channels are formed in the stator for receiving the coil and where the armature is hinged to the stator for movement toward the stator upon application of an electrical current to the coil. The stator has a length, a width and a height where its length is at least 1.6 times its width and its width is at least 2.0 times its height.
Abstract:
In one aspect of the present invention, an electromagnetic actuator is disclosed. The electromagnetic actuator includes a plunger adapted to move between first and second positions, a pull coil adapted to receive electrical energy and responsively produce a high electromagnetic force causing the plunger to move from the first position to the second position, and a hold coil adapted to receive electrical energy and responsively produce a low electromagnetic force for maintaining the plunger at the second position. A sensing device is included to detect the magnetic flux density produced by the coils and responsively produce a position signal having a magnitude responsive to the position of the plunger. Advantageously, signal conditioning circuitry receives the position signal, and de-energizes the pull coil in response to the position signal indicating that the plunger is at the second position.
Abstract:
A multiple pole solenoid (10) having outer pole flanges 44a-44d and inner pole flanges 46a-46d magnetically act on outer armature flanges (32-35) and inner armature flanges (36-39) respectively, to move an armature (14) where an AC coil (16) and a DC coil (18) are simultaneously energized by an AC electrical source (20) and a DC electrical source (22) respectively thereby providing a high pull-in force and a high holding force with low noise.In a second embodiment, a four pole solenoid (48) is comprised of a first AC coil (62) wound on the second pole (56) and a second AC coil (64) is oppositely wound on a third pole (58) and a DC coil (66) is wound on both the second (56) and third (58) poles where the first (54) and fourth poles (60) are without coils and an armature (50) is pulled into the poles (54-60) and held in position by the simultaneous energization of both the AC coils (62,64) and the DC coil (66).
Abstract:
An electromagnetic valve circuit used in a fluid line security device is disclosed. The circuit is adapted to open and close a fuel supply pipe. The circuit includes an attracting circuit and a holding circuit connected to one side of a power source. The attracting circuit including an attracting switch is in parallel with the attraction holding circuit. The attracting switch is closed only when the attraction phase of value opening is to be accomplished. In one modification the series circuit of the attracting switch and the electromagnetic valve circuit is coupled in parallel to a circuit formed by a hazard detecting switch, and a relay switch operating coil. In another modification a time limit current control is connected in series with the valve coil to control the supply of current to the coil for a predetermined time limit.
Abstract:
A bistable electromagnetic actuator has an armature maintained in one stable position magnetically, by means of a permanent magnet, and in a second stable position by means of a spring. Either position may be assumed by energization of a coil with current of the appropriate polarity or by application of mechanical force. A magnetic shunt maintains flux through the permanent magnet during energization of the coil.