Abstract:
A thermionic emission device comprises a first electrode, a second electrode, a single carbon nanotube, an insulating layer and a gate electrode. The gate electrode is located on a first surface of the insulating layer. The first electrode and the second electrode are located on a second surface of the insulating layer and spaced apart from each other. The carbon nanotube comprises a first end, a second end opposite to the first end, and a middle portion located between the first end and the second end. The first end of the carbon nanotube is electrically connected to the first electrode, and the second end of the carbon nanotube is electrically connected to the second electrode.
Abstract:
A high pressure discharge lamp, in which an anode and a cathode are disposed opposite each other in a bulb, achieves a long service life due to thorium (Th) being stably supplied to the cathode tip for a long time after lamp operation has been commence since the formation of the flicker phenomenon is suppressed over a long time due to the cathode being made of tungsten which contains thorium oxide on a surface space from the cathode tip, a carbide layer of tungsten carbide is formed and the cathode being bordered by an emitter containing body of tungsten which contains thorium dioxide, and a carbide layer of tungsten carbide being formed at least in a region bordering the cathode.
Abstract:
A cathode for an electron tube, includes a base metal having nickel as a main component, and an electron emitting material layer containing an alkaline earth metal oxide having barium oxide as a main component, wherein a metal layer having zirconium as a main component is located between the base metal and the electron emitting material layer. The cathode has an excellent initial electron emitting characteristic and can emit a large quantity of electrons for a long time. Therefore, the cathode is suitable for a larger and higher-definition CRT.
Abstract:
The present disclosure provides an electron beam device (500) for inspecting a sample (10) with an electron beam, comprising an electron beam source comprising a cold field emitter (100) for emitting an electron beam, electron beam optics for directing and focusing the electron beam onto the sample (10), and a detector device (540) for detecting secondary charged particles generated by impingement of the electron beam on the sample (10). The cold field emitter (100) includes an emitter tip (110), a base arrangement (120) configured for supporting the emitter tip (110) and comprising a first base element (122) and a second base element (124), and a filament (130) having at least a first filament portion (132) and a second filament portion (134) attaching the emitter tip (110) to the base arrangement (120), wherein the first filament portion (132) extends between the emitter tip (110) and the first base element (122) and the second filament portion (134) extends between the emitter tip (110) and the second base element (124), wherein a length (L) of each of the first filament portion (132) and the second filament portion (134) is 4 mm or less, and wherein a diameter of a cross-section of each of the first filament portion (132) and the second filament portion (134) is 0.13 mm or less.
Abstract:
A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO-CaO-Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
Abstract translation:具有与金属基体接触的钪和钡化合物的难熔金属基体的热离子分配器阴极及其形成方法。 本发明利用原子层沉积(ALD)在钨表面上形成钪化合物的纳米尺度均匀的共形分布,并进一步利用原位高压固结/浸渍以增强BaO-CaO-Al 2 O 3基发射混合物的浸渍 钪酸盐涂层的钨基体或烧结钨/钪酸盐/钡复合结构。 结果是具有改善的发射的钨 - 钪酸盐热阴极。
Abstract:
The emission properties of oxide cathodes, in which yttrium oxide, scandium oxide or a rare earth oxide is added to the electron-emissive material, are improved by using fine-grained yttrium, scandium or rare earth oxide.
Abstract:
Metal oxides and method for forming the method oxides are provided. The disclosed functional metal oxides are single crystalline or polycrystalline metal oxides, such as, for example, SrVO3, and have dimensions, phase purity, and crystalline quality previously unachievable. The disclosed methods include a combination of a gas atmosphere, vacuum sintering, and laser-based directional solidification of a seed rod in contact with a feed rod that is scalable for production quantities.
Abstract:
It is an object to provide a tungsten alloy exhibiting characteristics equal to or higher in characteristics than those of a thorium-containing tungsten alloy, without using thorium which is a radioactive material, and a discharge lamp, a transmitting tube, and a magnetron using the tungsten alloy. According to the present invention, a tungsten alloy includes 0.1 to 5 wt % of Zr in terms of ZrC.