Abstract:
A main control system 34 prepares, in advance, a voltage map showing the amount of focus deviation of a secondary electron beam B2 at a detection surface of an electron beam detector 30 corresponding with the amount of charge-up generated on a sample 4 upon irradiation with a primary electron beam B1, and stores this voltage map in a storage device 43. During an observation, the main control system 34 reads the voltage map stored in the storage device 43 and corrects the focal position of the secondary electron beam B2 by controlling either the voltage applied to the secondary optical system 20 or the voltage applied to the sample 4. As a result, focal position deviations resulting from charge-up generated on the sample being observed can be corrected without causing inconvenience to an operator.
Abstract:
According to one aspect of the present invention, there is provided a method for controlling of charged particle beam to compensate for a potential being present on a specimen, the method comprising the steps of: moving a charged particle beam over the specimen; measuring at least one secondary product and/or backscattered particles coming from the specimen to produce an image signal; scoring the image signal; changing the beam energy; analyzing the scores achieved with different beam energies; and adjusting the beam energy based on the analysis, to compensate for the potential being present on the specimen.
Abstract:
Disclosed is a method and apparatus for generating an image from a sample. The apparatus includes a charged particle beam generator arranged to generate and control a charged particle beam substantially towards a portion of the sample and a detector arranged to detect charged particles originating from the sample portion to allow generation of an image from the detected charged particles. The apparatus further includes a measurement device arranged to measure a characteristic of the sample portion to obtain a surface voltage value of the sample portion that is exposed to the charged particle beam. For example, the measurement device is an electrostatic voltmeter positioned to obtain a surface voltage value of the exposed sample portion. A charged particle beam is directed substantially towards a portion of the sample under a first set of operating conditions. A surface charge value of the sample portion is obtained under the first set of operating conditions. It is then determined whether an optimum set of operating conditions associated with a predetermined surface charge value have been found. When the optimum conditions have not been found, the operating conditions are adjusted and the charged particle beam is directed substantially towards the sample portion. When the optimum conditions have been found, the charged particle beam is directed substantially towards the sample portion under the found optimum operating conditions.
Abstract:
An autoadjusting charged-particle probe-forming apparatus improving the resolution of probe-forming charged-particle optical systems by minimizing optical aberrations. The apparatus comprises a source of charged particles, a probe-forming system of charged-particle lenses, a plurality of detectors optionally comprising a two-dimensional image detector, power supplies, a computer and appropriate software. Images are recorded by the two-dimensional detector and analyzed to determine the aberration characteristics of the apparatus. Alternately, multiple scanned images are recorded by a scanned image detector and also analyzed to determine the aberration characteristics of the apparatus. The aberration characteristics are used to automatically adjust the apparatus for improved optical performance.