Abstract:
A laser sustained plasma light source includes a plasma bulb containing a working gas flow driven by an electric current sustained within the plasma bulb. Charged particles are introduced into the working gas of the plasma bulb. An arrangement of electrodes maintained at different voltage levels drive the charged particles through the working gas. The movement of the charged particles within the working gas causes the working gas to flow in the direction of movement of the charged particles by entrainment. The resulting working gas flow increases convection around the plasma and increases laser to plasma interaction. The working gas flow within the plasma bulb can be stabilized and controlled by control of the voltages present on the each of the electrodes. A more stable flow of working gas through the plasma contributes to a more stable plasma shape and position within the plasma bulb.
Abstract:
Halides of aluminum or tin, or other metals, in combination with sodium chloride in the presence of mercury and excess aluminum or tin metal are used as a fill material in a solenoidal metal halide arc lamp. This fill results in very good color and a high efficacy.
Abstract:
A low pressure electric discharge lamp comprising a sealed light-transmissive envelope and a fill within the envelope; the fill including, as the primary light-emitting material, a highly fluorescent aromatic organic compound, such as perylene, coronene, p-terphenyl, 1,6-diphenyl-hexa-1,3,5-triene, 9,10diphenylanthracene, and 1,4-bis-2-(4-methyl-5-phenyloxazolyl) benzene. At operating temperatures, the pressure or partial pressure of the vaporized organic compound is less than 1 torr.
Abstract:
A plasma cell for use in a laser-sustained plasma light source includes a plasma bulb configured to contain a gas suitable for generating a plasma. The plasma bulb is transparent to light from a pump laser, wherein the plasma bulb is transparent to at least a portion of a collectable spectral region of illumination emitted by the plasma. The plasma bulb of the plasma cell is configured to filter short wavelength radiation, such as VUV radiation, emitted by the plasma sustained within the bulb in order to keep the short wavelength radiation from impinging on the interior surface of the bulb.
Abstract:
Disclosed herein are lamps comprising a radiation source and a phosphor blend configured for conversion of radiation, the phosphor blend including at least two different rare earth phosphors, wherein the phosphor blend comprises at least one multimodal rare earth phosphor. Disclosed advantages may include greater lumen output than an identical lamp in which the phosphor blend, at the same loading, does not comprise at least one multimodal rare earth phosphor.