DEVICES FOR INTEGRATED FRONT-END CIRCUITS

    公开(公告)号:US20250056878A1

    公开(公告)日:2025-02-13

    申请号:US18929367

    申请日:2024-10-28

    Abstract: A wireless front-end can include a plurality of circuits, including a power amplifier (PA), a low noise amplifier (LNA), and an RF switch. In order to decrease the size and improve the performance of the front-end, the various circuits of the front end can include N-polar III-N transistors that are all formed from the same epitaxial material structure and monolithically integrated onto a single chip. Due to the different performance requirements of the various transistors in the different circuits, parameters such as gate length, gate-to-channel separation, and surface-to-channel separation in the access regions of the devices can be varied to meet the desired performance requirements.

    Semiconductor device
    3.
    发明授权

    公开(公告)号:US12218204B2

    公开(公告)日:2025-02-04

    申请号:US16768401

    申请日:2018-11-30

    Abstract: Disclosed in an embodiment is a semiconductor device comprising a semiconductor structure, which comprises a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, wherein: the first conductive semiconductor layer comprises a first super lattice layer comprising a plurality of first sub layers and a plurality of second sub layers, the first and second sub layers being alternately arranged; the semiconductor structure emits ions of indium, aluminum, and a first and second dopant during a primary ion irradiation; the intensity of indium ions emitted from the active layer includes a maximum indium intensity peak; the doping concentration of the first dopant emitted from the first conductive semiconductor layer includes a maximum concentration peak; the maximum indium intensity peak is disposed to be spaced from the maximum concentration peak in a first direction; the intensity of indium ions emitted from the plurality of first sub layers has a plurality of first indium intensity peaks; the doping concentration of the first dopant emitted from the plurality of first sub layers has a plurality of first concentration peaks; and the plurality of first indium intensity peaks and the plurality of first concentration peaks are disposed between the maximum indium intensity peak and the maximum concentration peak.

    Semiconductor device
    8.
    发明授权

    公开(公告)号:US12159932B2

    公开(公告)日:2024-12-03

    申请号:US17014009

    申请日:2020-09-08

    Abstract: According to one embodiment, a semiconductor device includes first, second, and third electrodes, first, second, and third semiconductor layers, and a first insulating member. The first semiconductor layer includes first, second, third, fourth, and fifth partial regions. The third partial region is between the first and second partial regions. The fourth partial region is between the first and third partial regions. The fifth partial region is between the third and second partial regions. The first electrode includes a first electrode portion. The second semiconductor layer includes first and second semiconductor portions. The third semiconductor layer includes first and second semiconductor regions. The second semiconductor region is electrically connected to the first semiconductor region and the first electrode portion. The first insulating member includes a first insulating portion. The first insulating portion is provided between the third partial region and the third electrode.

    Nitride-based semiconductor device and method for manufacturing the same

    公开(公告)号:US12154980B2

    公开(公告)日:2024-11-26

    申请号:US17671562

    申请日:2022-02-14

    Abstract: A nitride-based semiconductor device includes a first nitride-based semiconductor layer, a lattice layer, a third nitride-based semiconductor layer, a first source electrode and a second electrode, and a gate electrode. The second nitride-based semiconductor layer is disposed over the first nitride-based semiconductor layer. The lattice layer is disposed between the first and second nitride-based semiconductor layers and doped to the first conductivity type. The lattice layer comprises a plurality of first III-V layers and second III-V layers alternatively stacked. Each of the first III-V layers has a high resistivity region and a current aperture enclosed by the high resistivity region. The high resistivity region comprises more metal oxides than the current aperture so as to achieve a resistivity higher than that of the current aperture. At least two of the first III-V layers have the same group III element at different concentrations.

Patent Agency Ranking