Abstract:
A method and apparatus is described for reformulating of an input gas from a gasification reaction into a reformulated gas. More specifically, a gas reformulating system having a gas reformulating chamber, one or more plasma torches, one or more oxygen source(s) inputs and control system is provided thereby allowing for the conversion of an input gas from a gasification reaction into a gas of desired composition.
Abstract:
The present invention provides a system that recycles heat recovered from hot products of a carbonaceous feedstock gasification process back into the gasification process. The hot gaseous products are used to heat working fluids such as air and water to produce hot air, hot water or steam. The heated fluids are used to return heat back to the gasification process. The system also comprises a control system to optimize the efficiency of a gasification process by minimizing energy consumption of the process, while also maximizing energy production.
Abstract:
The present invention provides a carbonaceous feedstock gasification system with integrated control subsystem. The system generally comprises, in various combinations, a gasification reactor vessel (or converter) having one or more processing zones and one or more plasma heat sources, a solid residue handling subsystem, a gas quality conditioning subsystem, as well as an integrated control subsystem for managing the overall energetics of the conversion of the carbonaceous feedstock to energy, as well as maintaining all aspects of the gasification processes at an optimal set point. The gasification system may also optionally comprise a heat recovery subsystem and/or a product gas regulating subsystem.
Abstract:
The invention provides a system and method for conversion of raw syngas and tars into refined syngas, while optionally minimizing the parasitic losses of the process and maximizing the usable energy density of the product syngas. The system includes a reactor including a refining chamber for refining syngas comprising one or more inlets configured to promote at least two flow zones: a central zone where syngas and air/process additives flow in a swirling pattern for mixing and combustion in the high temperature central zone; at least one peripheral zone within the reactor which forms a boundary layer of a buffering flow along the reactor walls, (b) plasma torches that inject plasma into the central zone, and (c) air injection patterns that create a recirculation zone to promotes mixing between the high temperature products at the core reaction zone of the vessel and the buffering layer, wherein in the central zone, syngas and air/process additives mixture are ignited in close proximity to the plasma arc, coming into contact with each other, concurrently, at the entrance to the reaction chamber and method of using the system.
Abstract:
A method and apparatus is described for reformulating raw gas and/or reducing and/or converting the tar in a raw gas from a gasification reaction. More specifically, a gas reformulating system having a gas reformulating chamber, one or more sources of or means for generating non-equilibrium plasma, and optionally one or more oxygen source(s) inputs and control system is provided. Methods of reformulation and/or reducing the tar concentration in a raw gas from a gasification reaction that uses non-equilibrium plasma are also provided.
Abstract:
A modular lateral transfer system for use in a horizontally oriented processing chamber is provided. Each module has the ability to deliver process gas in addition to moving the reactant material through the horizontally oriented processing chamber. The modular design enables the operator to remove and replace a module of the system, thereby substantially minimizing the downtime of the chamber required during servicing.
Abstract:
A Carbon Conversion System having four functional units, each unit comprising one or more zones, wherein the units are integrated to optimize the overall conversion of carbonaceous feedstock into syngas and slag. The processes that occur within each zone of the system can be optimized, for example, by the configuration of each of the units and by managing the conditions that occur within each zone using an integrated control system.
Abstract:
The present invention provides a gasifier comprising one or more fluid conduits for converting carbonaceous feedstock into an off-gas and residual solid material. The gasifier comprises a refractory-lined processing chamber having one or more fluid conduits located therein to facilitate the passage of fluid material such as gas into and/or out of the chamber. For example, a conduit facilitates the input of process additives and/or the exit of steam and/or off-gases from the processing chamber. The gasifier comprises one or more input(s) for receiving feedstock, one or more residue outlets, and heating means to facilitate the conversion process and a control system for controlling various aspects of the gasification process. Optionally, the gasifier may be configured for recycling steam and/or off-gas and/or recycled heat back into processing chamber. Optionally, the gasifier may further comprise one or more material displacement control modules, and mixing means.
Abstract:
A method and apparatus is described for the efficient conversion of carbonaceous feedstock including municipal solid waste into a product gas through gasification. More specifically, a horizontally-oriented gasifier having one or more lateral transfer system for moving material through the gasifier is provided thereby allowing for the horizontal expansion of the gasification process such that there is sequential promotion of feedstock drying, volatization and char-to-ash conversions.
Abstract:
A system and process for gas homogenization is disclosed. This has application in the areas of generation of gas and its conversion to electricity in downstream applications. The homogenization system minimizes variance in the gas characteristics (composition, flow, pressure, temperature), thereby rendering a steady stream of gas of consistent quality to the downstream machinery. This homogenization system can be adjusted to optimize the output gas stream for specific end-applications, or to optimize the output gas stream for different input feedstocks. This ensures that overall conversion efficiencies are maximised while keeping the process cost-effective. Such a uniform, steady output gas stream has a wide range of applications in the broad areas of generation of electricity (e.g. using internal combustion engines and combustion turbine engines), chemical synthesis (e.g. of compounds such as ethanol, methanol, hydrogen, methane, carbon monoxide, hydrocarbons), fuel-cell technologies and in polygeneration processes (processes that result in co-production of electricity and synthetic fuels).