Abstract:
A process for the recovery of lithium from waste lithium ion batteries or parts thereof is disclosed. The process comprising the steps of (a) providing a particulate material containing a transition metal compound and/or transition metal, wherein the transition metal is selected from the group consisting of Mn, Ni and Co, and wherein further at least a fraction of said Ni and/or Co, if present, are in an oxidation state lower than +2, and at least a fraction of said Mn, if present, is manganese(II)oxide; which particulate material further contains a lithium salt and a fluoride salt, and which particulate material optionally contains calcium provided that the element ratio calcium to fluorine is 1.7 or less or is zero; (b) treating the material provided in step (a) with a polar solvent and an alkaline earth hydroxide; and (c) separating the solids from the liquid, optionally followed by washing the solid residue with a polar solvent such as water provides good separation of lithium in high purity, and recovery of valuable transition metals.
Abstract:
Process for the recovery of transition metal from spent lithium ion batteries containing nickel, wherein said process comprises the steps of (a) heating a lithium containing transition metal oxide material to a temperature in the range of from 400 to 1200°C, (b) treating said heat-treated material with water, (c) treating the solid residue from step (b)with an acid selected from sulfuric acid, hydrochloric acid, nitric acid, methanesulfonic acid, oxalic acid and citric acid, (d) adjusting the pH value to 2.5 to 8, (e) removing compounds of Al, Cu, Fe, Zn or combinations of at least two of the foregoing from the solution or slurry obtained in step (d).
Abstract:
Process for the recovery of transition metal from cathode active materials containing nickel and lithium, wherein said process comprises the steps of (a) treating a lithium containing transition metal oxide material with a leaching agent (preferably an acid selected from sulfuric acid, hydrochloric acid, nitric acid, methanesulfonic acid, oxalic acid and citric acid), (b) adjusting the pH value to 2.5 to 8, and (c) treating the solution obtained in step (b)with metallic nickel, cobalt or manganese or a combination of at least two of the foregoing.
Abstract:
Described are a kit comprising at least two magnetocaloric materials having identical stoichiometry but different Curie temperature, a magnetocaloric regenerator comprising at least two magnetocaloric materials having identical stoichiometry but different Curie temperature and a process for producing at least two magnetocaloric materials having identical stoichiometry but different Curie temperature.
Abstract:
The present invention is in the field of processes for the generation of thin inorganic films on substrates, in particular atomic layer deposition processes. The present invention relates to a process comprising bringing a compound of general formula (I) into the gaseous or aerosol state and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein M is Mn, Ni or Co, X is a ligand which coordinates M, n is 0, 1, or 2, R 1 , R 2 are an alkyl group, an alkenyl group, an aryl group or a silyl group, m is 1, 2, or 3, R 3 , R 4 , and R 5 are an alkyl group, an alkenyl group, an aryl group, an alkoxy group, or an aryloxy group, and p is 1, 2 or 3.
Abstract:
The present invention is in the field of processes for the generation of thin inorganic films on substrates. In particular the present invention relates to a process comprising bringing a com- pound of general formula (I) into the gaseous or aerosol state L n ---M--X m L= formula and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein R 1 , R 2 , R 3 , R 4 , are independent of each other hydrogen, an alkyl group, an aryl group, or a SiA 3 group with A being an alkyl or aryl group, and at least two of R 1 , R 2 , R 3 , R 4 are a SiA 3 group, n is an integer from 1 to 4, M is a metal or semimetal, X is a ligand which coordinates M, and m is an integer from 0 to 4.
Abstract translation:本发明涉及在基材上生成薄无机膜的方法领域。 特别地,本发明涉及一种方法,其包括将通式(I)的化合物引入气态或气溶胶状态Ln-M-Xm L =式中,并将通式(I)的化合物从 气态或气溶胶态,其中R1,R2,R3,R4彼此独立地为氢,烷基,芳基或具有A为烷基或芳基的SiA3基团,并且至少两个 R 1,R 2,R 3,R 4为SiA 3基团,n为1〜4的整数,M为金属或半金属,X为配位M,m为0〜4的整数。
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Beheizung eines Rohrleitungssystems, umfassend mindestens zwei Rohrleitungen (1), entlang denen sich jeweils ein elektrisches Widerstandsheizelement erstreckt, dadurch gekennzeichnet, dass sich an jedem elektrischen Widerstandsheizelement an mindestens einem Ende (3, 5) ein Potential nahe dem Erdpotential einstellt und das elektrische Widerstandheizelement an einer von diesem Ende (3, 5) entfernt liegenden Position mit einem Pol einer Gleichstromquelle oder mit jeweils einer Phase (7) einer n-phasigen Wechselstromquelle (9) verbunden ist, wobei bei Einsatz einer n-phasigen Wechselstromquelle (9) n eine ganze Zahl gleich oder größer als 2 ist.
Abstract:
Die Erfindung betrifft ein Rohrleitungssystem zur Förderung einer Salzschmelze, umfassend mindestens eine von der Salzschmelze durchströmte Rohrleitung(5), mindestens einen Zulauf und mindestens einen Ablauf, wobei die von der Salzschmelze durchströmte Rohrleitung (5) mindestens ein gegenüber der Waagerechten geneigtes Gefälle aufweist und jeweils an den niedrigsten Positionen über ein Entleerungsventil (25) mit einer Entleerungsleitung (27) und an den höchsten Positionen mit einem Belüftungsventil (23) verbunden ist. Die Erfindung betrifft weiterhin ein Verfahren zur Entleerung des Rohrleitungssystems.