Abstract:
Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the material disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
Abstract:
An oxide-confined vertical cavity surface emitting laser having reduced parasitic capacitance. The VCSEL includes a substrate having a first mirror stack grown epitaxially thereon. The first mirror stack includes a plurality of semiconductor layers and is doped with a first doping type. An active region is grown epitaxially above the first mirror stack for generating a laser emission. A control layer is grown epitaxially above the first mirror stack, between first mirror stack and the active region or above the active region, and includes a central non-oxidized conducting portion and an outer, laterally oxidized insulating portion. A second mirror stack is grown epitaxially above the active region and the control layer. The second mirror stack includes a second plurality of semiconductor layers doped with a second doping type. The second plurality of semiconductors layers includes pairs of high index and low index materials. The low index material layers are generally equally laterally oxidized and have a non-oxidized central portion. The penetration of the lateral oxidation of the low index material layers is less than the oxidation penetration for the outer laterally oxidized insulating portion of the control layer.
Abstract:
Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the materials disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
Abstract:
Die Erfindung betrifft ein optoelektronisches Bauelement mit einer Schichtstruktur mit einer aktiven Zone zum Erzeugen einer elektromagnetischen Strahlung, wobei die aktive Zone in einer Ebene angeordnet ist, wobei die Schichtstruktur eine Oberseiteund vier Seitenflächen aufweist, wobei eine streifenförmige Ridgestruktur auf der Oberseiteder Schichtstruktur angeordnet ist, wobei sich die Ridgestruktur zwischen der ersten Seitenfläche und der dritten Seitenfläche erstreckt, wobei die erste Seitenfläche eine Abstrahlfläche für elektromagnetische Strahlung darstellt, wobei seitlich neben der Ridgestruktur in die Oberseiteder Schichtstruktur eine erste Ausnehmung eingebracht ist, wobei eine zweite Ausnehmung in die erste Ausnehmung eingebracht ist, und wobei die zweite Ausnehmung sich bis zu der zweiten Seitenfläche erstreckt.
Abstract:
Es umfasst der Halbleiterlaser (1) eine Halbleiterschichtenfolge(2) mit einem n-leitenden n-Bereich (21), einem p-leitenden p-Bereich (23) und einer dazwischenliegendenaktive Zone (22) zur Erzeugung von Laserstrahlung. Zur Stromeinprägung befindet sich direkt an dem p-Bereich (23) eine für die Laserstrahlung durchlässige p-Kontaktschicht (3) aus einem transparenten leitfähigen Oxid. Direkt an der p-Kontaktschicht (3) ist eine elektrisch leitende und metallische p-Kontaktstruktur (4) angebracht. Die p-Kontaktschicht (3) ist ein Teil einer Mantelschicht, sodass die Laserstrahlung im Betrieb des Halbleiterlasers (1) bestimmungsgemäß in die p-Kontaktschicht (3) eindringt. Zwei Facetten (25) der Halbleiterschichtenfolge (2) bilden Resonatorendflächen für die Laserstrahlung. In wenigstens einem Stromschutzbereich (5) direkt an zumindest einer der Facetten (25) ist eine Stromeinprägung in den p-Bereich (23) unterdrückt. Der Stromschutzbereich weist in Richtung senkrecht zur zugehörigen Facette (25) eine Ausdehnung von mindestens 0,5µm und von höchstens 100 µm und zusätzlich von höchstens 20 % einer Resonatorlänge für die Laserstrahlung auf.
Abstract:
Die Erfindung betrifft eine monolithische Diodenlaseranordnung (100), umfassend eine Vielzahl von auf einem gemeinsamen Trägersubstrat nebeneinander angeordnete Einzelemitter (101), die jeweils Kontaktfenster (19, 20) zur elektrischen Kontaktierung aufweisen, welche an den jeweiligen Einzelemittern (101) an einer dem Trägersubstrat gegenüberliegenden Vorderseite angeordnet sind. Die Erfindung betrifft ferner ein Verfahren zur Herstellung einer derartigen Diodenlaseranordnung und eine Laservorrichtung mit einersolchen Diodenlaseranordnung.
Abstract:
The invention relates to a semiconductor strip laser which, in at least one embodiment, comprises a first semiconductor region (11) of a first conductivity type. Furthermore, the semiconductor strip laser includes a second semiconductor region (13) of a second conductivity type. An active zone (12) for generating laser radiation is located between the semiconductor regions (11, 13). A strip waveguide (3) is formed in the second semiconductor region (13). The strip waveguide (3) is set up for one-dimensional wave guidance along a waveguide direction (L). A first electric contact (41) is located on the first semiconductor region (11), and a second electric contact (43) is located on the second semiconductor region (13). Furthermore, the semiconductor strip laser (1) includes a heat spreader (2) which, at least up to a temperature of 220° C, is dimensionally stably connected to the semiconductor regions (11, 13). The heat spreader (2) has an average thermal conductivity of at least 50 W/mK.
Abstract:
A composite device for splitting photonic functionality across two or more materials comprises a platform, a chip, and a bond securing the chip to the platform. The platform comprises a base layer and a device layer. The device layer comprises silicon and has an opening exposing a portion of the base layer. The chip, a III-V material, comprises an active region (e.g., gain medium for a laser). The chip is bonded to the portion of the base layer exposed by the opening such that the active region of the chip is aligned with the device layer of the platform. A coating hermitically seals the chip in the platform.
Abstract:
The present invention relates to an active gain layer stack (21) for a vertical emitting laser device, the active gain layer stack (21) comprising a semiconductor material, wherein the semiconductor material is structured such that it forms at least one mesa (24) extending in a vertical direction. A transversally neighboring region (25) that at least partly surrounds said mesa (24) has a second refractive index (n 2 ) - At least part of said mesa (24) has a first refractive index (n 1 ) and a part of the neighboring region (25) transversally adjacent to said part of the mesa (24) has second refractive index (n 2) - Said first refractive index (n 1 ) is higher than said second refractive index (n 2 ) and a diameter in transversal direction of said mesa (24) is chosen such that a transversal confinement factor in the active gain layer stack (21) is increased. The present invention also relates to a laser device including such a stack, further to a method of operation of such a stack, and also to a method of manufacturing of such a stack. The VECSEL comprises a IV-VI semiconductor gain material grown on the lower mirror and an external cavity mirror. A plurality of mesa (22) may be grown on a single substrate (23). Anti-guiding is prevented by the lower refractive index of the surrounding material (25) improving the single transversal mode operation.
Abstract:
A surface emitting laser element includes a lower DBR formed on a substrate; an active layer formed above the lower DBR; an upper DBR formed on the active layer. The upper DBR includes a dielectric multilayer that is formed as a result of dielectrics having different refractive indexes being alternately laminated and formed, a light shielding part is formed above the upper DBR, and the light shielding part has an opening at a central area for emitting light.