Abstract:
본 발명의 기술적 사상의 일 실시예에 따른 원통형 연료극 지지체를 사용한 직접탄소 연료전지의 단위전지 제조방법은, 주원료로 산화니켈(NiO) 및 이트리아 안정화 지르코니아(Y 2 O 3 stabilized ZrO 2 )를 준비하고, 다공성 지지체를 제조하기 위한 기공형성제로 카본블랙을 각각 정량하여 고순도 지르코니아 볼과 용매를 혼합, 건조, 채질(Sieving)하여 분말을 형성하며, 상기 분말을 혼련(Knead)하여 페이스트를 제조하는 단계; 상기 페이스트를 저온에서 숙성시킨 후, 가압출 및 압출성형을 통해 일측이 개방되고 타측이 폐쇄되도록 구성하여, 탄소 및 용융탄산염을 원료로 사용하는 원통형 연료극 지지체를 형성하는 단계; 상기 원료극 지지체를 롤링(Rolling) 건조 및 가소결을 수행하는 단계; 상기 가소결을 수행한 후 NiO/YSZ 입자 슬러리를 이용하여 담금 코팅법과 진공 슬러리 코팅법(Vacuum slurry coating method)을 통해 연료극을 형성하는 단계; 상기 연료극 외측면에 전해질 슬러리(slurry)로 담금 코팅법과 진공 슬러리 코팅법을 통해 전해질층을 형성하는 단계; 및 상기 전해질층 외측면에 담금 코팅법과 진공 슬러리 코팅법을 통해 LSM-YSZ층, LSM층 및 LSCF층이 순차적으로 형성된 복합 전극으로 코팅된 공기극을 형성하는 단계를 포함할 수 있다.
Abstract:
Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit (1) für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten formstabilen Elektrolyten, dadurch gekennzeichnet, dass die beiden Elektroden auf den formstabilen Elektrolyten (4) aufgebracht werden, wobei das Aufbringen wenigstens einer der Elektroden mittels Aero-solabscheidung erfolgt.
Abstract:
The invention relates to a method for preparing a substrate surface structured with thermally stable metal alloy nanoparticles, which method comprises - providing a micellar solution of amphiphilic molecules such as organic diblock or multiblock copolymers in a suitable solvent; - loading the micelles of said micellar solution with metal ions of a first metal salt; - loading the micelles of said micellar solution with metal ions of at least one second metal salt; - depositing the metal ion-loaded micellar solution onto a substrate surface to form a (polymer) film comprising an ordered array of (polymer) domains; co-reducing the metal ions contained in the deposited domains of the (polymer) film by means of a plasma treatment to form an ordered array of nanoparticles consisting of an alloy of the metals used for loading the micelles on the substrate surface. The invention also provides a nanostructured substrate surface obtainable by said method as well as the use of said nanostructured substrate surface as a catalyst.
Abstract:
Produit fondu constitué, pour plus de 50% de sa masse, d'un matériau présentant une structure eutectique et une composition telle que: - (ZrO 2 + dopant de la zircone optionnel) : 42,5% - 46,5%, - Mn 3 O4 : 53,5% - 57,5%.
Abstract:
A method for producing a catalyst supporting a metal or an alloy on a support, including: independently controlling a temperature of a first supercritical fluid to be first temperature, the first supercritical fluid containing a precursor of the metal or precursor of the alloy that is dissolved in a supercritical fluid; independently controlling a temperature of the support to be a second temperature higher than the temperature of the first supercritical fluid; and supplying the first supercritical fluid controlled to the first temperature to the support, to cause the metal or the alloy to be supported on the support.
Abstract:
A known method for producing a porous carbon body comprises providing a template of inorganic template material which comprises interconnected pores, providing a precursor substance for carbon, infiltrating the pores of the template with the precursor substance, carbonizing the precursor substance and removing the template with formation of the porous carbon product. Starting therefrom, to provide a method which allows a cost-effective production of a porous carbon structure also with thick wall thicknesses, it is suggested according to the invention that precursor substance particles of fusible material and template particles are provided and a powder mixture is formed from the particles, and that the powder mixture is heated before or during carbonization according to method step (d) in such a manner that precursor substance melt penetrates into the pores of the template particles.
Abstract:
A catalyst precursor is provided having a thermally decomposable porous support; an organic coating/filling compound, and a non-precious metal precursor, wherein the organic coating/filling compound and the non-precious metal catalyst precursor coat and/or fill the pores of the thermally decomposable porous support.
Abstract:
Disclosed herein is a metal-air battery having a cathode, an anode, and an electrolyte. The cathode has a cathode current collector and a composite of a porous carbon structure and a pseudocapacitive coating. The coating does not completely fill or obstruct a majority of the pores, and the pores can be exposed to a gas. The electrolyte is in contact with the anode and permeates the composite without completely filling or obstructing a majority of the pores.