Abstract:
A memory (12) includes a plurality of memory cells (12), a sense amplifier (18) coupled to at least one of the plurality of memory cells, a temperature dependent current generator (26) comprising a plurality of selectable temperature dependent current sources (52-62) for generating a temperature dependent current, a temperature independent current generator (28) comprising a plurality of selectable temperature independent current sources (70, 72, 74) for generating a temperature independent current, and a summer (30) coupled to the temperature dependent current generator (26) and the temperature independent current generator (28) for combining the temperature dependent current and the temperature independent current to generate a reference current for use by the sense amplifier (18). A temperature coefficient of the reference current is approximately a same as a temperature coefficient of a memory cell current of at least one of the plurality of memory cells.
Abstract:
A method is set forth for writing volatile memory cells embodied on an integrated circuit and taking the form of an array of volatile memory cells including a plurality of word lines and a plurality of bit lines. In use, a first write operation is performed on at least one memory cell at a first time. Further, at a second time, a second write operation is performed on at least one memory cell. During use, various voltage relationships may be employed for enhanced programming. Just by way of example, a voltage at a corresponding word line associated with the at least one memory cell during the first write operation is different than that during the second write operation.
Abstract:
A sense amplifier includes a reference voltage generator for generating a reference output voltage and a core output voltage generator for generating a core output voltage. The core output voltage generator includes a core front-end stage and a core back-end stage or includes a plurality of amplifier transistors each conducting a portion of a core current through a current conducting device such as core cell. The sizes and/or connections of transistors of such components result in high voltage swing and thus high sensitivity of the sense amplifier.
Abstract:
A sense amplifier system for sensing the charge of a charge-storing means (601) comprises a first and second charge reference means (600a, 600b) connected in parallel and similar to the charge-storing means (601) and having respectively opposite polarization. The charge reference means (600a, 600b) and the charge-storing means (601) have a common input node (WL), and first and second pseudo-differential reference sense amplifiers (RSA1, RSA2) are connected with output nodes (RBL1, RBL2) of the charge reference means (600a, 600b) for generating reference signals to a common reference node (CHREF) connected with a pseudo-differential sense amplifier (SA). The pseudo-differential sense amplifier (SA) has a second input for receiving an output signal from the charge-storing means (601) and generates an output signal indicative of a polarization state of the charge-storing means. Another embodiment adapted for sensing the charges of a plurality of charge-storing means (701) and comprising at least two pairs of charge reference means is also described. A non-volatile matrix-addressable memory system comprising an electrical polarizable dielectric memory material exhibiting hysterisis and a sense amplifier system as described is also claimed.
Abstract:
A high-speed current sense amplifier has complementary reference cells and load devices that eliminate capacitive mismatch contributions. The current sense amplifier includes a voltage comparator, a first clamping device coupled between a first input of the voltage comparator and a first input signal node. The first clamping device is coupled to a reference voltage. A second clamping device is coupled between the second input of the voltage comparator and a second input signal node. The second clamping device is also coupled to the reference voltage. A current mirror is coupled between the first and second input of the voltage comparator and is coupled to an active capacitance balancing circuit. The active capacitance balancing circuit may be combined with the voltage comparator. Equalization devices may be coupled between the first and second inputs of the voltage comparator, and between the first input signal node and the second input signal node.
Abstract:
A low read current, low power consumption sense amplifier well suited for low frequency RFID systems is disclosed. An MOS transistor receives the read current from a memory cell, typically an EEPROM, and a current mirror is formed by a parallel MOS transistor. The mirror current is integrated on a capacitor after the charge on the capacitor is cleared via a reset pulse. A time period is defined during which the voltage on the capacitor is compared to a second voltage. The second voltage is formed from a reference voltage or from dummy cells, in either case the reference voltage is at about the logic boundary between a one and zero stored in a memory cell. A comparator, io with or without input hysteresis, receives the voltage on the capacitor and a second voltage and within the time period, the output state of the comparator indicates the binary contents of the memory cell.
Abstract:
A memory (10) provides a sensing scheme that maintains impedance balance between the route that the data takes to the sense amplifier (24) and the route the reference or references take to the sense amplifier. Each sub-array (14, 18) of the memory has an adjacent column decoder (20, 22) that couples data to a data line (37, 51, 41, 63) that is also adjacent to the sub-array and may be considered part of the column decoder. The data for the selected sub-array is routed to the sense amplifier via its adjacent data line. The reference that is part of the selected sub-array is coupled to the data line of a non-selected sub-array. Thus the reference, which in the case of a MRAM type memory is preferably in close proximity to the location of the selected data, traverses a route to the sense amplifier (24) that is impedance balanced with respect to the route taken by the data.
Abstract:
A passive element memory array preferably biases selected X-lines to an externally received VPP voltage and selected Y-lines to ground. Unselected Y-lines are preferably biased to VPP minus a first offset voltage, and unselected X-lines biased to a second offset voltage (relative to ground). The first and second offset voltages preferably are identical and have a value of about 0.5 to 2 volts. The VPP voltage depends upon the memory cell technology used, and preferably falls within the range of 5 to 20 volts. The area otherwise required for an on-chip VPP generator and saves the power that would be consumed by such a generator. In addition, the operating temperature of the integrated circuit during the programming operation decreases, which further decreases power dissipation. When discharging the memory array, the capacitance between layers is preferably discharged first, then the layers are discharged to ground.
Abstract:
The invention relates to a high speed sense amplifier with low power draw for a memory cell (1). The sense amplifier comprises a first current balancing circuit (53, 55) which amplifies a memory signal current (IBL) received from the memory cell (1) over a memory signal line (3) and delivers the result to a signal output (16) on the sense amplifier (11), a second current balancing circuit (53, 54) which generates an adjustable current (IEINSTELL) depending on the received memory signal current (IBL) and an adjustable reference current source (23) which supplies a reference current (IREF) to the signal output (20) on the sense amplifier (11). The value of the supplied reference current (IREF) may be adjusted as a function of the adjustable current (IEINSTELL) generated by the second current balancing circuit (53, 54) by means of an adjustment line (28).