Abstract:
A pharmaceutically acceptable composition and method for solid tumor therapy in a patient in need of such therapy. The composition contains, as the only active agents, the combination of (a) an inhibitor of c-Fos, and (b) an inhibitor of Dusp-1, and optionally (c) an inhibitor of a tyrosine kinase. The composition is administered to the patient in a dosing regimen for a period sufficient to provide therapy for solid tumors.
Abstract:
The present invention provides an improved process and apparatus for alkanolysis of polytetramethylene ether diacetate to polytetraalkylene ether glycol in the presence of a C1 to C4 alkanol and an alkali or alkaline earth metal catalyst wherein the catalyst component of the product mixture comprising polytetraalkylene ether glycol, alkanol and catalyst, essentially free of the alkanol acetate by-product, e.g., methyl acetate is removed by contacting the mixture in the absence of added water with certain ion exchange resin at specified contact conditions. The invention further provides a highly efficient method for removing the catalyst component of a mixture comprising polytetraalkylene ether glycol, alkanol and alkali or alkaline earth metal catalyst by contacting the mixture in the absence of added water with certain ion exchange resin at specified contact conditions,
Abstract:
Probes comprising one or more selectively cleavable α-azidoether moieties are provided; and linkers comprising the one or more selectively cleavable α-azidoether moieties. The α-azidoether moiety will undergo a Staudinger reaction with a suitable reducing agent, resulting in cleavage. The probes find use in a variety of detection assays, e.g. specific polynucleotide binding assays, polypeptide binding assays, etc. The cleavable linkers are suitable for synthetic reactions, e.g. to prepare probes of the invention; in the synthesis of cleavable peptide conjugates; and the like.
Abstract:
Methods for introducing a 1-halo-l-haloalkene compound onto an aromatic or heteroaromatic ring are provided, including processes for the production of certain 1-halovinyl aryl or heteroaryl derivatives in which the 1-halovinyl group is either 1-fluoro or 1-chlorovinyl and the aromatic species phenyl or thiophene, the processes including coupling an arylmagnesium species with a dihalo olefin in the presence of a nickel or iron catalyst.
Abstract:
The invention relates to methods of assessing the polymorphic form of a substance by assessing Raman-shifted radiation scattered by a particle of the substance. The method is useful, for example, for assessing particle sizes and size distributions in mixtures containing both particles of the substance and other materials. The invention also relates to methods of selecting and controlling polymorph formation by illuminating a material with non-resonant (i.e., non-absorbed) laser radiation as it is thermally driven through a phase transition temperature.
Abstract:
A method for preparing p-(2-hydroxyalkyloxy)styrene monomers and oligomers is described. The method comprises a base-catalyzed reaction of a styrene ester, a suitable alcohol and an alkylene oxide in a single vessel reaction. In this method, the reactive p-hydroxystyrene is generated in situ via the base-catalyzed transesterification reaction between the styrene ester and the alcohol in the presence of the base catalyst. The p-hydroxystyrene formed reacts with the alkylene oxide to form the p-(2-hydroxyalkyloxy)styrene monomer or oligomer.
Abstract:
Olefins and alcohols present in Fischer-Tropsch products are converted to primary and secondary alkyl alcohols having at least four carbons through acid catalyzed etherification and hydrolysis reactions. The alcohols are added to a highly isoparaffinic distillate fuel blend, improving the lubricity of the mixture, and forming a distillate fuel with improved lubricity.
Abstract:
A process for reacting a first component with itself or a second component to produce a third component in which a first material comprising a first component or said first component and a second component is fed to divided wall column having a catalytic distillation structure in at least one of the separate vertical sections of the divided wall column where concurrently: (1) a first component alone or with a second component is contacted with a catalytic distillation structure in a distillation reaction zone thereby catalytically reacting at least a portion of the first component with itself or with the second component to form a product and (2) a first mixture comprising the first component and the product or the first component, the second component and the product; and withdrawing the product from the distillation column reactor; while within the column concurrently with the catalytic reaction and fractionation a second mixture is fractionated, which contains the first component and the product or first and second components (if a second component is present) and the product in a parallel and separate distillation non reaction zone to fractionate the product and withdrawing the product from said distillation non reaction zone. For example, tertiary amyl methyl ether may be prepared by reacting methanol with isoamylene in a C 5 stream utilizing a distillation column reactor wherein the distillation column reactor comprises one side of a divided wall column. On one side the product, tertiary amyl methyl ether, is separated from the unreacted methanol and C 5 's and on the other side the remaining isoamylenes are reacted with methanol and a separation of the tertiary amyl methyl ether and C 5 's from the methanol/C 5 azeotrope is effected.
Abstract:
A process for producing a ring-substituted arene borane which comprises reacting a ring-substituted arene with an HB organic compound in the presence of a catalytically effective amount of an iridium or rhodium complex with three or more substituents, excluding hydrogen, bonded to the iridium or rhodium and a phosphorus organic ligand, which is at least in part bonded to the iridium or rhodium, to form the ring-substituted arene borane. Also provided are catalytic compounds for catalyzing the process comprising an iridium or rhodium complex with three or substituents, excluding hydrogen, bonded to the iridium or rhodium and optionally, a phosphorus organic ligand, which is at least in part bonded to the iridium or rhodium.
Abstract:
This invention is directed to a method of removing dimethyl ether from an olefin stream. Dimethyl ether is removed from the olefin stream by first separating the olefin stream into a first stream comprising dimethyl ether and lighter boiling point compounds, and a second stream comprising C 4 + olefin and higher boiling point hydrocarbons. The dimethyl ether is then separated from the first stream using extractive distillation.