Abstract:
A test site and method are herein disclosed for predicting E-test structure (in-die structure) and/or device performance. The test site comprises an E-test structure and OCD-compatible multiple structures in the vicinity of the E-test structure to allow optical scatterometry (OCD) measurements. The OCD-compatible multiple structures are modified by at least one modification technique selected from (a) multiplication type modification technique, (b) dummification type modification technique, (c) special Target design type modification technique, and (d) at least one combination of (a), (b) and (c) for having a performance equivalent to the performance of the E-test structure.
Abstract:
An optical system and method are presented for use in measurements on an upper surface of a layered sample when located in a measurement plane. The optical system is configured as a normal-incidence system having an illumination channel and a collection channel, and comprises an objective lens unit and a light propagation affecting device. The objective lens unit is accommodated in the illumination and collection channels, thereby defining a common optical path for propagation of illuminating light from the illumination channel toward an illuminating region in the measurement plane and for propagation of light returned from measurement plane to the collection channel. The light propagation affecting device comprises an apertured structure located in at least one of the illumination and collection channels, and configured to provide angular obscuration of light propagation path for blocking angular segments associated with light propagation from regions outside the illuminated region.
Abstract:
A method and system are presented for use in controlling a multiple patterning process of n patterning stages subsequently applied to a sample to produce a target pattern thereon. The method comprises: providing intermediate measured data indicative of an optical response of the sample after being patterned by m-th patterning stage, 1≤ m n ; processing said intermediate measured data, determining at least a location parameter of a predetermined feature of the pattern, and generating measured data indicative of said at least one selected parameter; utilizing said at least location parameter of the predetermined feature for optimizing a data interpretation model for interpretation of measured data indicative of an optical response from the sample being patterned by k-th subsequent patterning stage, m k ≤ n .
Abstract:
A data analysis method and system are presented for use in determining one or more parameters of a patterned structure located on top of an underneath layered structure. According to this technique, input data is provided which includes first measured data PMD being a function f of spectral intensity Iλ and phase φ , PMD=f(I λ ;φ) , corresponding to a complex spectral response of the underneath layered structure, and second measured data S meas indicative of specular reflection spectral response of a sample formed by the patterned structure and the underneath layered structure. Also provided is a general function F describing a relation between a theoretical optical response S theor of the sample and a modeled optical response S model of the patterned structure and the complex spectral response PMD of the underneath layered structure, such that S theor =F(S model ; PMD) . The general function is then utilized for comparing the second measured data S meas and the theoretical optical response S theor , and determining parameter(s) of interest of the top structure.
Abstract:
A measurement system for use in measuring parameters of a patterned sample is presented. The system comprises: a broadband light source; an optical system configured as an interferometric system; a detection unit; and a control unit. The interferometric system defines illumination and detection channels having a sample arm and a reference arm comprising a reference reflector, and is configured for inducing an optical path difference between the sample and reference arms; the detection unit comprises a configured and operable for detecting a combined light beam formed by a light beam reflected from said reflector and a light beam propagating from a sample's support, and generating measured data indicative of spectral interference pattern formed by at least two spectral interference signatures. The control unit is configured and operable for receiving the measured data and applying a model-based processing to the spectral interference pattern for determining one or more parameters of the pattern in the sample.
Abstract:
An article is presented configured for controlling a multiple patterning process, such as a spacer self-aligned multiple patterning, to produce a target pattern. The article comprises a test site carrying a test structure comprising at least one pair of gratings, wherein first and second gratings of the pair are in the form of first and second patterns of alternating features and spaces and differ from the target pattern by respectively different first and second values which are selected to provide together a total difference such that a differential optical response from the test structure is indicative of a pitch walking effect.
Abstract:
A control system is presented for use in measuring one or more parameters of a sample. The control system comprises an input utility and a processor utility. The input utility is configured for receiving input data including first data comprising X-ray Diffraction or High-Resolution X-ray Diffraction (XRD) response data of the sample indicative of a material distribution in the sample, and second data comprising optical response data of the sample to incident light indicative of at least a geometry of the sample. The processor utility is configured and operable for processing and analyzing one of the first and second data for optimizing the other one of the first and second data, and utilizing the optimized data for determining said one or more parameters of the sample including a strain distribution in the sample.
Abstract:
A method and system are presented for use in controlling a process applied to a patterned structure having regions of different layered stacks. The method comprises: sequentially receiving measured data indicative of optical response of the structure being processed during a predetermined processing time, and generating a corresponding sequence of data pieces measured over time; and analyzing and processing the sequence of the data pieces and determining at least one main parameter of the structure. The analyzing and processing comprises: processing a part of said sequence of the data pieces and obtaining data indicative of one or more parameters of the structure; utilizing said data indicative of said one or more parameters of the structure and optimizing model data describing a relation between an optical response of the structure and one or more parameters of the structure; utilizing the optimized model data for processing at least a part of the sequence of the measured data pieces, and determining at least one parameters of the structure characterizing said process applied to the structure, and generating data indicative thereof.
Abstract:
A broadband polarizer device of a Glan-Thompson type is described, as well as a method of manufacturing such device. Such parameters as a material of the polarizer prisms, the prisms' configuration and a glue material, are selected so as to ensure total internal reflection for the broadband input light, including DUV spectral range (from about 190nm). The glue material is selected so as to be characterized by a dispersion profile matching that of the polarizer prisms' material for extraordinary and ordinary rays in the broadband spectral range. Different methods of manufacturing such broadband polarizer are described is disclosed.
Abstract:
A method and system are presented for automatic target finding by using two imaging channels with relatively low and high magnifications, using the low magnification channel (relatively large field of view) for finding a region of interest (i.e., that of the targets location within the field), scanning this zone by grabbing images via the high magnification channel (relatively small field of view) and marking the overlay targets using image processing algorithms.