Abstract:
A method, a system, and a non-transitory computer readable medium for accurate Raman spectroscopy. The method may include executing at least one iteration of the steps of: (i) performing, by an optical measurement system, a calibration process that comprises (a) finding a misalignment between a region of interest defined by a spatial filter, and an impinging beam of radiation that is emitted from an illuminated area of a sample, the impinging beam impinges on the spatial filter; and (b) determining a compensating path of propagation of the impinging beam that compensates the misalignment; and (ii) performing a measurement process, while the optical measurement system is configured to provide the compensating path of propagation of the impinging beam, to provide one or more Raman spectra.
Abstract:
A system and methods for OCD metrology are provided including receiving multiple first sets of scatterometric data, dividing each set into k sub-vectors, and training, in a self-supervised manner, k2 auto-encoder neural networks that map each of the k sub-vectors to each other. Subsequently multiple respective sets of reference parameters and multiple corresponding second sets of scatterometric data are received and a transfer neural network (NN) is trained. Initial layers include a parallel arrangement of the k2 encoder neural networks. Target output of the transfer NN training is set to the multiple sets of reference parameters and feature input is set to the multiple corresponding second sets of scatterometric data, such that the transfer NN is trained to estimate new wafer pattern parameters from subsequently measured sets of scatterometric data.
Abstract:
A measurement system is presented configured for integration with a processing equipment for applying optical measurements to a structure. The measurement system comprises: a support assembly for holding a structure under measurements in a measurement plane, configured and operable for rotation in a plane parallel to the measurement plane and for movement along a first lateral axis in said measurement plane; an optical system defining illumination and collection light channels of normal and oblique optical schemes and comprising an optical head comprising at least three lens units located in the illumination and collection channels; a holder assembly comprising: a support unit for carrying the optical head, and a guiding unit for guiding a sliding movement of the support unit along a path extending along a second lateral axis perpendicular to said first lateral axis; and an optical window arrangement comprising at least three optical windows made in a faceplate located between the optical head at a certain distance from the measurement plane. The optical windows are aligned with the illumination and collection channels for, respectively, propagation of illuminating light from the optical head and propagation of light returned from an illuminated region to the optical head, in accordance with the normal and oblique optical schemes.
Abstract:
A test structure and method of its manufacture are presented for use in metrology measurements of a sample pattern. The test structure comprises a test pattern comprising a portion of the sample pattern including at least one selected feature and a blocking layer at least partially covering regions of the test structure adjacent to the at least one selected region
Abstract:
A test structure is presented for use in metrology measurements of a sample pattern. The test structure comprises a main pattern, and one or more auxiliary patterns. The main pattern is formed by a plurality of main features extending along a first longitudinal axis and being spaced from one another along a second lateral axis. The one or more auxiliary patterns are formed by a plurality of auxiliary features associated with at least some of the main features such that a dimension of the auxiliary feature is in a predetermined relation with a dimension of the respective main feature. This provides that a change in a dimension of the auxiliary feature from a nominal value affects a change in non-zero order diffraction response from the test structure in a predetermined optical measurement scheme, and this change is indicative of a deviation in one or more parameters of the main pattern from nominal value thereof.
Abstract:
A test structure is presented for use in metrology measurements of a sample pattern formed by periodicity of unit cells, each formed of pattern features arranged in a spaced-apart relationship along a pattern axis. The test structure comprises a test pattern, which is formed by a main pattern which includes main pattern features of one or more of the unit cells and has a symmetry plane, and a predetermined auxiliary pattern including at least two spaced apart auxiliary features located within at least some features of the main pattern, parameters of which are to be controlled during metrology measurements.
Abstract:
A metrology system is presented for measuring parameters of a structure. The system comprises: an optical system and a control unit. The optical system is configured for detecting light reflection of incident radiation from the structure and generating measured data indicative of angular phase of the detected light components corresponding to reflections of illuminating light components having different angles of incidence. The control unit is configured for receiving and processing the measured data and generating a corresponding phase map indicative of the phase variation along at least two dimensions, and analyzing the phase map using modeled data for determining one or more parameters of the structure.
Abstract:
A method and system are presented for use in optical measurements on patterned structures. The method comprises performing a number of optical measurements on a structure with a measurement spot configured to provide detection of light reflected from an illuminating spot at least partially covering at least two different regions of the structure. The measurements include detection of light reflected from said at least part of the at least two different regions comprising interference of at least two complex electric fields reflected from said at least part of the at least two different regions, and being therefore indicative of a phase response of the structure, carrying information about properties of the structure.
Abstract:
Method and system for measuring one or more parameters of a patterned structure, using light source producing an input beam of at least partially coherent light in spatial and temporal domains, a detection system comprising a position sensitive detector for receiving light and generating measured data indicative thereof, an optical system configured for focusing the input light beam onto a diffraction limited spot on a sample's surface, collecting an output light returned from the illuminated spot, and imaging the collected output light onto a light sensitive surface of the position sensitive detector, where an image being indicative of coherent summation of output light portions propagating from the structure in different directions.
Abstract:
A measurement system and method is presented for measuring properties of a structure having a pattern of spaced-apart features arranged along a pattern axis. The measurement system comprises: a structure support unit defining a support plane for supporting the structure, an optical system comprising an illumination system defining an illumination path, and at least one detection system defining one or more detection paths, and a control system. The optical system has a predetermined numerical aperture, and is configured to define an incidence plane and the detection corresponding to dark-field detection mode for collecting light propagating from an illuminated region on the structure with a solid angle outside that of specular reflection, said incidence plane being oriented with respect to said support plane such as to form a selected angle other than 90 degrees with said pattern axis. The control system is configured and operable for receiving from the detection system data indicative of light detected with said dark-field mode and processing the received data by applying thereto predetermined modeled data based on a predetermined unit cell having a dimension along the patterned axis selected in accordance with the numerical aperture of the optical system.