Abstract:
A method for patient ID resolution in recordation of patient data acquired by a medical device (10) comprises: receiving patient data from the medical device comprising pre-gap patient data (50) followed in time by a time gap (52) followed in time by post-gap patient data (54); receiving one or more timestamped patient ID entries (56, 58) associated with the received patient data; associating first patient ID information with the pre-gap patient data; and associating second patient ID information with the post-gap patient data; wherein the associating operations are based on the one or more timestamped patient ID entries (56, 58) associated with the patient data.
Abstract:
A semantic medical technology is disclosed. In various embodiments, the technology organizes an initial data collection to collect data from the one or more sensors; processes the data to obtain an initial diagnosis wherein the initial diagnosis can be a syntax diagnosis or a semantic diagnosis; identifies an organization for an additional data collection to collect additional data; analyzes the additional data to obtain a refined diagnosis; and repeats the identifying and analyzing until a stopping criterion is satisfied.
Abstract:
In a system and method of patient flow and treatment management, information regarding a patient admitted to a first unit of a patient treatment facility that is received into a first one of a number of user devices is dispatched to a server computer. Upon receipt of this patient information the server computer runs (desirably in real-time) a prediction application/algorithm that predicts an estimate of (1) the patient needing a resource in the first unit or a second unit of the facility, (2) a length of time before the patient needs the resource, and/or (3) an identity of the unit that has the needed resource. The server computer then dispatches (again, desirably in real-time) one or more of the predictions to one or more of the user devices, each of which receives and displays the prediction on a display thereof.
Abstract:
A rotatable tag is provided that is configured to be affixed to a moveable object, the tag includes a housing configured to provide an increased volume and occupy a relatively small amount of surface area on the object to which the tag is affixed. The rotatable tag is configured to transmit information related to the tag and/or an environment surrounding the tag. Related systems are also provided herein.
Abstract:
The invention pertains to a stationary exercise bike along with a display that provides instruction to lead a rider through an exercise program. The invention allows a rider to obtain benefits of a group, instructor-led class though the rider's schedule does not permit the rider to participate in the class. The invention also describes a method of exercising with the foregoing bike and display.
Abstract:
A method, a device and a system for correlating medical information of a first format to medical information of a second format are provided. The method includes parsing an input sequence representing textual information into plural terms; searching a medical database to associate each term with a medical diagnosis; and translating each term into a coded phrase previously associated with the medical diagnosis in the medical database.
Abstract:
A pharmaceutical storage and retrieval device and a method of accessing and loading the device. The device includes a housing, at least one port with controlled access to inventory stored within the device, a robotic transfer mechanism for moving inventory items to and from the controlled port, software for tracking the inventory and users of the device, and an interface with the pharmacy software system to track and monitor which inventory is authorized for access by each user and which inventory is needed to fill a prescription.
Abstract:
A dynamic medical object information base (DMOIB) is used with a communication protocol. A medical object information base (MOIB) may generally define rules of creation and modification of data defined for use in medical products. A dynamic version of the MOIB adapts to changing data classifications. DMOIB is preferably compatible with non-dynamic MOIB systems. DMOIB preferably reduces code space and simplifies management of software projects. DMOIB may allow for an entirely dynamic system using a discovery/negotiation process for determining full features of a device. DMOIB may also allow for generation of a dynamic interface to handle data from devices.
Abstract:
Methods and systems are disclosed for promoting use of research devices by a plurality of research device users or by a single research device user in compliance with at least one predetermined use criterion. Methods and systems are disclosed for monitoring use by a user of a research device in accordance with at least one predetermined use criterion.
Abstract:
Methods and systems are disclosed for monitoring use by a user of a portable research device based on one or more kinds of monitored data. Methods and systems are disclosed for monitoring use by a user of a portable research device in accordance with at least one predetermined use criterion using actively and/or passively gathered data.