Abstract:
Crystal pulling systems having composite polycrystalline silicon feed tubes, methods for forming such tubes, and methods for forming a single crystal silicon ingot with use of such tubes. The composite polycrystalline silicon feed tubes include quartz and at least one dopant. The composite polycrystalline silicon feed tube may be made by a slip cast method.
Abstract:
Methods for determining suitability of Czochralski growth conditions to produce silicon substrates for epitaxy. The methods involve evaluating substrates sliced from ingots grown under different growth conditions (e.g., impurity profiles) by imaging the wafer by infrared depolarization. An infrared depolarization parameter is generated for each epitaxial wafer. The parameters may be compared to determine which growth conditions are well-suited to produce substrates for epitaxial and/or post-epi heat treatments.
Abstract:
Methods for etching a semiconductor structure and for conditioning a processing reactor in which a single semiconductor structure is treated are disclosed. An engineered polycrystalline silicon surface layer is deposited on a susceptor which supports the semiconductor structure. The polycrystalline silicon surface layer may be engineered by controlling the temperature at which the layer is deposited, by grooving the polycrystalline silicon surface layer or by controlling the thickness of the polycrystalline silicon surface layer.
Abstract:
Ingot puller apparatus having a compound exhaust tube and methods for selecting the length of the lower and upper portions of the compound exhaust tube are disclosed. In some embodiments, the upper portion of the compound exhaust tube is made of graphite and the lower portion is made of stainless steel.
Abstract:
A method for growing a single crystal silicon ingot by the continuous Czochralski method is disclosed. The melt depth and thermal conditions are constant during growth because the silicon melt is continuously replenished as it is consumed, and the crucible location is fixed. The critical v/G is determined by the hot zone configuration, and the continuous replenishment of silicon to the melt during growth enables growth of the ingot at a constant pull rate consistent with the critical v/G during growth of a substantial portion of the main body of the ingot. The continuous replenishment of silicon is accompanied by periodic or continuous nitrogen addition to the melt to result in a nitrogen doped ingot.
Abstract:
Methods for purifying the molybdenum-99 isotope are disclosed. Molybdenum-99 is loaded onto an anion exchange column and extracted. In some embodiments, the extraction solution may include nitric acid and nitrate salts. In other embodiments, a two stage elution is performed in which a nitic acid containing eluent and a hydroxide containing eluent are used in succession to extract molybdenum-99.
Abstract:
A method is provided for preparing a semiconductor-on-insulator structure comprising a flowable insulating layer or a reflowable insulating layer.
Abstract:
The disclosed method is suitable for producing a SiGe-on-insulator structure. According to some embodiments of the method, a layer comprising SiGe is deposited on silicon-on-insulator substrate comprising an ultra-thin silicon top layer. In some embodiments, the layer comprising SiGe is deposited by epitaxial deposition. In some embodiments, the SiGe epitaxial layer is high quality since it is produced by engineering the strain relaxation at the Si/buried oxide interface. In some embodiments, the method accomplishes elastic strain relaxation of SiGe grown on a few monolayer thick Si layer that is weakly bonded to the underline oxide.
Abstract:
A semiconductor on insulator multilayer structure is provided. The multilayer comprises a high resistivity single crystal semiconductor handle substrate, an optionally relaxed semiconductor layer comprising silicon, germanium, or silicon germanium, an optional polycrystalline silicon layer, a dielectric layer, and a single crystal semiconductor device layer.