Abstract:
An embodiment of a gas turbine engine having a liner and casing is disclosed. The liner is disposed between the casing and a rotatable turbomachinery component. In one form, the rotatable turbomachinery component is a turbofan engine. The liner can be thin relative to a distance between the liner and the casing. Protrusions can be used between the liner and the casing. The protrusions can be a rib and can extend from the casing or the liner. An insert, such as an abradable surface, can be used with the liner. A filler can be used in the space between the liner and the casing. A corresponding method is also provided.
Abstract:
A fluid plenum including a body defining an internal cavity having an inlet and an outlet. The fluid plenum further includes at least one wall positioned in the internal cavity that divides the internal cavity into first and second passageways, and which also divides the inlet into first and second inlet portions, and divides the outlet into first and second outlet portions. The first passageway receives fluid through the first inlet portion and directs fluid to the first outlet portion, and the second passageway receives fluid through the second inlet portion and directs fluid to the second outlet portion. The first and second passageways extend first and second lengths that are different from one another, and also generate a substantially common back-pressure at the first and second inlet portions during flow of a fluid stream through the inlet, including a first sub-stream of the fluid stream through the first passageway and a second sub-stream of the fluid stream through the second passageway.
Abstract:
A composite component includes a bonded portion and a component mount. The component mount is coupled to the bonded portion to move relative to the bonded portion. The bonded portion includes a fiber portion and a ceramic portion.
Abstract:
A control for a hybrid turbo electric aero-propulsion system prioritizes and optimizes the operating parameters, according to a desired optimization objective, for and across a number of different control optimization subsystems of the hybrid turbo electric aero-propulsion system. The control subsystems may include, for example, a propulsion control optimization subsystem and a power plant control optimization subsystem. The optimizations may be based on a system model, which is developed and updated during the operation of the hybrid turbo electric aero-propulsion system.
Abstract:
A combustor adapted for use in a gas turbine engine is disclosed. The combustor includes a metallic shell forming a cavity and a ceramic liner arranged in the cavity of the metallic shell. The ceramic liner defines a combustion chamber in which fuel is burned during operation of a gas turbine engine. The ceramic liner includes a plurality of ceramic tiles mounted to the metallic shell and arranged to shield the metallic shell from heat generated in the combustion chamber.
Abstract:
An ultra high bypass ratio turbofan engine includes a variable pitch fan, a low pressure turbine, a reduction gearbox, and a plurality of outlet guide vanes. The ultra high bypass ratio turbofan engine has a bypass ratio between about 18 and about 40. The variable pitch fan and the low pressure turbine are coupled together by the reduction gearbox. The reduction gearbox reduces the speed of the variable pitch fan relative to the low pressure turbine. The plurality of outlet guide vanes are spaced aft of the variable pitch fan and are axially swept. The variable pitch fan and the low pressure turbine are configured to generate a fan pressure ratio between about 1.15 and about 1.24.
Abstract:
An integrated access panel (62) is disclosed that can be used to assist in adjusting a component like a fan blade (64) of a turbofan engine. In one form the integrated access panel (62) is hinged at one end such that the panel remains attached during adjustment of the fan blade (64). The access panel (62) can be positioned in an angled flow surface of a nacelle such that the fan blade (64) cannot be removed from a wheel without removal of the nacelle or opening of the access panel (62). The integrated access panel (62) can be springloaded and positioned to allow the fan blade to be removed from a wheel by moving the access panel out of the way. Subsequent blade removal can occur by rotation of the wheel to locate another blade in proximity to the access panel.
Abstract:
A method for making a gas turbine engine ceramic matrix composite airfoil is disclosed. The method includes fabricating an airfoil preform that has a slotted forward end and a continuous trailing end. The slotted forward end of the airfoil preform is coupled to an airfoil core insert. A ceramic matrix composite covering is applied to cover the slots of the airfoil perform. The continuous trailing end of the airfoil preform is removed to expose the slots. A gas turbine engine airfoil is also disclosed.
Abstract:
A gas turbine engine airflow member including a blade core portion, a shroud tip portion extending from the blade core portion, and an airfoil portion formed exteriorly to the blade core portion, where the blade core portion and the shroud tip portion are constructed as a first unitary structure and the airfoil portion is constructed as a second structure. A method of forming a gas turbine engine component is also disclosed.
Abstract:
A method of producing a ceramic matrix composite comprising: a) applying a fiber interface coating to the composite, b) coating the composite via chemical vapor infiltration, and c) infiltrating the composite with molten material, wherein the composite is not removed from a tool between steps (a), (b), and (c), wherein the fiber interface coating and the chemical vapor infiltration are forced flow processes, wherein the forced flow fiber interface coating applies a pressure gradient of about 0.005 to about 1.0 atm, wherein the coating is carbon, boron nitride, or silicon doped boron nitride, wherein the chemical vapor infiltration applies silicon carbide, silicon nitride carbide, boron carbide, or carbon as a coating, wherein the coating is about 0.1 [micro]m to about 15.0 [micro]m, wherein the ceramic matrix composite is a tool, wherein the molten material comprises an alloy, wherein the molten material comprises silicon carbide, carbon, or a ceramic particulate, wherein the composite is multi-layered, wherein at least one layer comprises at least one of a carbide, a nitride, a boride, or carbon, for instance one layer is silicon carbide or boron nitride.