Abstract:
The invention relates to an application system for water-based adhesives to produce corrugated and laminated board products using less adhesive than traditionally possible. The water based colloidal adhesive is selected from the group consisting of biopolymer nanoparticles and formulations based thereon, polyvinyl acetate and formulations based thereon, polyvinyl alcohol blends and formulations based thereon, dextrins and formulations based thereon, polyacrylics and formulations based thereon, vinyl acetate-acrylic copolymers and formulations based thereon, ethylene-vinyl acetate copolymers and formulations based thereon, vinyl acetate-ethylene copolymers and formulations based thereon, and other adhesives of similar characteristics, and blends of any of the former.
Abstract:
A process for producing a biopolymer nanoparticles product is disclosed. In this process, biopolymer feedstock and a plasticizer are fed to a feed zone of an extruder having a screw configuration in which the feedstock is process using shear forces in the extruder, and a crosslinking agent is added to the extruder downstream of the feed zone. The biopolymer feedstock and plasticizer are preferably added separately to the feed zone. The screw configuration may include two or more steam seal sections. Shear forces in a first section of the extruder may be greater than shear forces in an adjacent second section of the extruder downstream of the first section. In a post reaction section located after a point in which the crosslinking reaction has been completed, water may be added to improve die performance.
Abstract:
A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch is disclosed. The device may be in the form of an aptamer-biopolymer-active agent conjugat, where the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked nydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells.
Abstract:
A delivery device for an active agent comprises nanoparticles based on a biopolymer such as starch. The delivery device may also be in the form of an aptamer-biopolymer-active agent conjugate wherein the aptamer targets the device for the treatment of specific disorders. The nanoparticles may be made by applying a high shear force in the presence of a crosslinker. The particles may be predominantly in the range of 50-150 nm and form a colloidal dispersion of crosslinked hydrogel particles in water. The biopolymer may be functionalized. The aptamer may be conjugated directly to the cross-linked biopolymers. The active agent may be a drug useful for the treatment of cancer. The delivery device survives for a period of time in the body sufficient to allow for the sustained release of a drug and for the transportation and uptake of the conjugate into targeted cells. However, the biopolymer is biocompatible and resorbable.
Abstract:
Environmentally friendly biopolymer adhesives are described, wherein the adhesives comprise biopolymer particles, more preferably starch microparticles, and most preferably starch nanoparticles, and their aqueous dispersions. Applications for the biopolymer particle adhesives are described, that are environmentally friendly alternatives to petroleum based synthetic adhesives. The biopolymer particle adhesives provide are biodegradable as well as repulpable, and thus provide bio-based recycling-friendly alternatives to synthetic adhesives derived from petroleum resources.
Abstract:
The present invention provides the novel and nonobvious discovery that sugar macromers can be effectively used to provide a new generation of renewable comonomers for bio-synthetic hybrid paper binder systems having a controlled hydrophilic-hydrophobic balance for improved water retention and film forming properties, on machine runnability, offset printability, biodegradability, enhanced recyclability, and other performance attributes.
Abstract:
The invention relates to an application system for water-based adhesives to produce corrugated and laminated board products using less adhesive than traditionally possible. The water based colloidal adhesive is selected from the group consisting of biopolymer nanoparticles and formulations based thereon, polyvinyl acetate and formulations based thereon, polyvinyl alcohol blends and formulations based thereon, dextrins and formulations based thereon, polyacrylics and formulations based thereon, vinyl acetate-acrylic copolymers and formulations based thereon, ethylene-vinyl acetate copolymers and formulations based thereon, vinyl acetate-ethylene copolymers and formulations based thereon, and other adhesives of similar characteristics, and blends of any of the former.
Abstract:
The invention concerns a process for producing corrugated board, wherein a biopolymer latex adhesive is used as the corrugating adhesive. The biopolymer latex adhesive can be obtained by extruding a plasticized biopolymer, especially starch, in the presence of a crosslinking agent such as glyoxal. The preparation of the latex adhesive and its application in corrugating operation do not require a gelatinization step, nor the use of caustic soda or borax.
Abstract:
A curable aqueous binder composition comprising sheared or extruded cross linked starch particles and a crosslinking agent for use in the formation of composite materials such as mineral, natural organic or synthetic fibre products including mineral fibre insulation, non-woven mats, fibreglass insulation and related glass fibre products as well as wood based products and construction materials. In one application the curable aqueous starch binder composition may be blended with a second non-formaldehyde resin to make fibreglass insulation. In another application the curable aqueous starch binder composition may be mixed into a formaldehyde based resin to make fibreglass roof shingles.
Abstract:
The invention therefore provides a method of improving print performance in a paper product comprising applying a coating composition comprising (i) a pigment and (ii) a starch dispersion of discrete crosslinked native starch particles in an aqueous liquid, wherein the particle size of the starch particles in the starch dispersion ranges from about 40 nm to about 400μm, to the paper product, wherein the print performance of the paper product is improved. In one embodiment, the coating composition comprises a solids content of from 5 to about 75% weight and comprises (i) about 100 parts by weight of pigment, and (ii) about 1 to about 300 parts by weight of starch, all based on dry weight.