Abstract:
A memory device generates a select voltage (V[0]) and an unselect voltage (V[1]) on bit lines and generates a bit line select voltage (V[1]-E) having a magnitude less than the unselect voltage (V[1]) so that the application of the bit line select voltage to a gate of a transistor (110) receiving the select voltage (V[0] ) causes the transistor to conduct, and the application of the bit line select voltage to a gate of a transistor receiving the unselect voltage (V[1]) biases the transistor off.
Abstract:
A method and system for providing a multi-bank memory is described. The method and system include providing a plurality of banks. Each of the plurality of banks includes at least one array including a plurality of memory cells and analog sensing circuitry. The method and system further include providing common digital sensing circuitry coupled with the plurality of banks.
Abstract:
A signal generator circuit is configured to generate program signals for a memory array. The program signals are applied to word lines in the memory array, and have a transient state based on a coupling characteristic of the word lines and selector gates. The transient state is configured to minimize coupling between the word lines and the gates of the selectors so that a state of each selector remains unchanged during the transient state.
Abstract:
Aspects for program pulse generation during programming of nonvolatile electronic devices include providing a configurable voltage sequence generator to manage verify-pulse and pulse-verify switching as needed during modification operations of a programming algorithm for nonvolatile electronic devices, wherein more efficient modification operations result. In this manner, highly flexible bit sequence generation that can be easily managed by a microcontroller occurs, resulting in a shorter code length, a faster execution time, and ease of reuse in different devices. More particularly, fully compatible voltage sequence generation is introduced that can be applied on the terminals of the flash cells being modified and permits an efficient and time saving management of pulse-verify and verify-pulse switching.
Abstract:
A signal generator circuit is configured to generate program signals for a memory array. The program signals are applied to word lines in the memory array, and have a transient state based on a coupling characteristic of the word lines and selector gates. The transient state is configured to minimize coupling between the word lines and the gates of the selectors so that a state of each selector remains unchanged during the transient state.
Abstract:
A memory device generates a select voltage and an unselect voltage on bit lines and generates a bit line select voltage having a magnitude less than the unselect voltage so that the application of the bit line select voltage to a gate of a transistor receiving the select voltage causes the transistor to conduct, and the application of the bit line select voltage to a gate of a transistor receiving the unselect voltage biases the transistor off.
Abstract:
A method and system for providing a multi-bank memory is described. The method and system include providing a plurality of banks. Each of the plurality of banks includes at least one array including a plurality of memory cells and analog sensing circuitry. The method and system further include providing common digital sensing circuitry coupled with the plurality of banks.
Abstract:
A sensing circuit with current offset functionality. In one embodiment, the sensing circuit includes a memory circuit having a first offset circuit operative to offset a first current. The sensing circuit also includes a reference circuit coupled to the memory circuit, where the reference circuit includes a second offset circuit operative to offset a second current. The sensing circuit also includes a compare circuit coupled to the memory circuit and the reference circuit, where the compare circuit determines the state of a memory cell based on first current and the second current. According to the system disclosed herein, the first and second offset circuits optimize the performance of the sensing circuit and prevent errors when determining the state of the memory cell.
Abstract:
A sensing circuit with current offset functionality. In one embodiment, the sensing circuit includes a memory circuit having a first offset circuit operative to offset a first current. The sensing circuit also includes a reference circuit coupled to the memory circuit, where the reference circuit includes a second offset circuit operative to offset a second current. The sensing circuit also includes a compare circuit coupled to the memory circuit and the reference circuit, where the compare circuit determines the state of a memory cell based on first current and the second current. According to the system disclosed herein, the first and second offset circuits optimize the performance of the sensing circuit and prevent errors when determining the state of the memory cell.
Abstract:
Aspects for program pulse generation during programming of nonvolatile electronic devices include providing a configurable voltage sequence generator to manage verify-pulse and pulse-verify switching as needed during modification operations of a programming algorithm for nonvolatile electronic devices, wherein more efficient modification operations result. In this manner, highly flexible bit sequence generation that can be easily managed by a microcontroller occurs, resulting in a shorter code length, a faster execution time, and ease of reuse in different devices. More particularly, fully compatible voltage sequence generation is introduced that can be applied on the terminals of the flash cells being modified and permits an efficient and time saving management of pulse-verify and verify-pulse switching.