Abstract:
A multimodal polyethylene composition having at least two polyethylene components, wherein each component has a molecular weight distribution of equal to or less than about 5, one component has a higher molecular weight than the other component, and the higher molecular weight component has an "a" parameter value of equal to or greater than about 0.35 when fitted to the Carreau-Yasuda equation with n=0.
Abstract:
The present invention is directed to PE-100 ethylene copolymers and pipe made thereof, having a Tabor abrasion between 0.01 and 0.001 grams lost/1000 revolutions. These copolymers are formed by contacting ethylene with at least one mono-l-olefin comonomer having from 2 to 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and, a cocatalyst. Additionally, the comonomers may be selected from mono-1-olefins having 4 to 10 carbon atoms, such as, 1 -hexene, 1 -butene, 4methyl- l-pentene, 1-octene, and 1-decene. Further, these ethylene copolymers may be employed to produce PE- 100 pipe having both small diameters and diameters in excess of 42 inches substantially without sagging or other gravitational deformation. Copolymers of ethylene and 1-hexene are disclosed which are used to produce PE-100 pipe.
Abstract:
The present invention is directed to homo-polymers and copolymers of mono-1-olefins, a method of making such polymers, and uses of such polymers. Polymers of the present invention are formed by contacting at least one mono-1-olefin having from 2 to about 20 carbon atoms per molecule and at least one mono-l-olefin co-monomer having from 2 to about 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and a cocatalyst. The catalyst system of the present invention comprises a chromium source on an aluminophosphate support which has a phosphorous to aluminum mole ratio of less than about 0.3. Further, the catalyst system is treated with less than about 7 weight percent fluoride based on the weight of the support and is calcined. Cocatalyst are selected from trialkylboron compounds, triarylboron compounds, alkylaluminum compounds, and combinations thereof.In another aspect of the present invention, ethylene copolymers are employed to produce PE-100 pipe. These copolymers are formed by contacting ethylene with at least one mono-l-olefin comonomer having from 2 to about 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and a cocatalyst. Additionally, the comonomers may be selected from mono-1-olefins having 4 to 10 carbon atoms, such as, 1-hexene, 1-butene, 4-methyl-1-pentene, 1-octene, and 1-decene. Further, these ethylene copolymers may be employed to produce PE-100 pipe having both small diameters and diameters in excess of 42 inches substantially without sagging or other gravitational deformation. Copolymers of ethylene and 1-hexene are disclosed which are used to produce PE-100 pipe.
Abstract:
A method of determining multimodal polyethylene quality comprising the steps of (a) providing a multimodal polyethylene resin sample; (b) determining, in any sequence, the following: that the multimodal polyethylene resin sample has a melt index within 30% of a target melt index; that the multimodal polyethylene resin sample has a density within 2.5% of a target density; that the multimodal polyethylene resin sample has a dynamic viscosity deviation (%MVD) from a target dynamic viscosity of less than about 100%; that the multimodal polyethylene resin sample has a weight average molecular weight (Mw) deviation (%MwD) from a target Mw of less than about 20%; and that the multimodal polyethylene resin sample has a gel permeation chromatography (GPC) curve profile deviation (%GPCD) from a target GPC curve profile of less than about 15%; and (c) responsive to step (b), designating the multimodal polyethylene resin sample as a high quality resin.
Abstract:
A composition comprising a polyethylene wherein the composition is enriched in polymer molecules having topological variations by an enrichment factor and wherein the composition displays a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms. A composition comprising an isolated Ziegler-catalyzed polyethylene having a long chain branching frequency of greater than about 0.5 long chain branches per 1000 total carbon atoms at the high molecular weight end.
Abstract:
The present invention provides a polymerization process which is conducted by contacting an olefin monomer and at least one olefin comonomer in the presence of hydrogen and a metallocene-based catalyst composition. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, low levels of long chain branches, and a ratio of Mw/Mn from about 3 to about 6.
Abstract:
Systems and methods for predicting or calculating a virtual polymer property that is related to polymer architecture of a semi-crystalline polymer or calculating various virtual polymer properties related to polymer architecture as a means to design resins for particular end-use applications that require various mechanical and physical properties.
Abstract:
The present invention provides several methods of determining values of physical or chemical properties of polymers. In these methods, at least two polymer training samples are provided. Characteristics of the polymer microstructures of the training samples are correlated with values of physical or chemical properties of the training samples. These correlations are subsequently applied to the respective characteristics of polymer test samples in order to determine the values of physical or chemical properties of the test samples.
Abstract:
Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. Methods for preparing and using such catalysts to produce polyolefins are also provided. The compositions and methods disclosed herein provide ethylene polymers having a HLMI of from about 0.5 to about 25, a polymer density of from about 0.920 to about 0.965, and a polydispersity of from about 3.0 to about 30.
Abstract:
An analytical method comprising performing a first fractionation of a polymer sample based on differences in crystallizability to provide a first set of sample fractions, performing a first analysis on the first set of sample fractions, performing a second fractionation of the first set of sample fractions to produce a second set of sample fractions, performing a second analysis on the second set of sample fractions, and synchronizing the first fractionation and second fractionation to provide about concurrent analysis of the polymer sample.