Abstract:
The invention relates to a method and a device (100) for determining the amount of a target component (2) in a sample, wherein magnetic particles (2) can bind to a contact surface (4) with kinetics that depend on the sample-amount of the target component. The method comprises at least two washing steps during which magnetic particles (2) are magnetically moved away from the contact surface (4) and corresponding measurements of the remaining amount of magnetic particles (2) at the contact surface (4). The amount of target component in the sample is estimated from at least one of such measurement results. The measurement allows to determine also high concentrations of target component for which the sensor surface (4) is saturated in a steady-state.
Abstract:
The present invention relates to a method for measuring Troponin I in a sample comprising the steps of providing a sample, contacting the sample with a monoclonal anti-Troponin I antibody coupled to a magnetic label, contacting the sample with a polyclonal anti-Troponin I antibody coupled to a sensor surface and detecting the magnetic label on the sensor surface. The invention further relates to a device and a cartridge for measuring Troponin I in a sample.
Abstract:
The invention relates to a method and a device (100) for determining the amount of a target component (2) in a sample, wherein magnetic particles (2) can bind to a contact surface (4) with kinetics that depend on the sample-amount of the target component. The method comprises at least two washing steps during which magnetic particles (2) are magnetically moved away from the contact surface (4) and corresponding measurements of the remaining amount of magnetic particles (2) at the contact surface (4). The amount of target component in the sample is estimated from at least one of such measurement results. The measurement allows to determine also high concentrations of target component for which the sensor surface (4) is saturated in a steady-state.
Abstract:
The invention relates to a carrier (11) and an apparatus (100) for optical detection in a sample (1) in a sample chamber (2). The carrier (11) comprises an optical structure (50) for refracting an input light beam (Ll) into the adjacent sample chamber (2) and for collecting an output light beam (L2) from light that originates in the sample chamber (2) from the input light beam. Preferably, the optical structure (50) comprises grooves in the surface (12) of the carrier (11) in which the input light beam is transmitted over a short distance through a sample. The optical structure (50) can also be used for a wetting detection.
Abstract:
The invention relates to a carrier (11) and an apparatus (100) for optical detection in a sample (1) in a sample chamber (2). The carrier (11) comprises an optical structure (50) for refracting an input light beam (Ll) into the adjacent sample chamber (2) and for collecting an output light beam (L2) from light that originates in the sample chamber (2) from the input light beam. Preferably, the optical structure (50) comprises grooves in the surface (12) of the carrier (11) in which the input light beam is transmitted over a short distance through a sample. The optical structure (50) can also be used for a wetting detection.
Abstract:
The present invention is related to an immunoassay for the detection of an analyte in a sample, said assay comprising a plurality of moieties capable of binding to said analyte, wherein capture moieties which are not specific for the same epitope are bound to a solid substrate, and at least one epitope-specific detection moiety is bound to a detectable marker, and wherein the detectable marker to which the epitope-specific detection moiety is bound is a large particle marker having a particle size of ≥ 50 nm and ≤ 5000 nm.
Abstract:
The present invention is related to a method for detection of a biological target in an affinity assay, the method comprising the steps of providing a biological sample volume containing the biological target, adding a first capturing moiety to the biological sample volume comprising the biological target, wherein the first capturing moiety is adhered to a particle, concentration of the captured biological target into an elution volume that is smaller than the biological sample volume in step a), cleavage of the first capturing moiety or the biological target from the particle and direct or indirect detection and/or quantification of the biological target in a sandwich or competitive affinity assay format, wherein the biological target is associated with at least one capturing moiety, preferably at least two capturing moieties.
Abstract:
A method for controlling the movement of magnetic or magnetizable objects (10) in a biosensor cartridge. The method comprises the step of providing a biosensor cartridge with a laterally extending sensor surface (A) and at least a magnetic field generating means (20, 30, 30') for generating a magnetic field with a field gradient substantially perpendicular to the sensor surface(A). The magnetic field generating means (20, 30, 30') are alternatingly actuated such that the generated magnetic field directs alternatingly the magnetic or magnetizable objects (10) substantially perpendicular to the sensor surface (A) away and toward the sensor surface, wherein pulse lengths of the alternating actuation are adjusted such that a lateral movement of magnetizable objects along the laterally extending sensor surface is substantially avoided.
Abstract:
The present invention relates to a sensing device (100) for detecting a target substance (2) in an investigation region (113). The sensing device (100) comprises a sensing surface (112) with an investigation region (113) and a reference region (120) thereon. The sensing device (100) further comprises a reference element (121) located at the reference region (120). The reference element (121) is adapted to shield the reference region (120) from the target substance (2) such that light reflected at the reference region (120) under total internal reflection conditions remains unaffected by the presence or absence of the target substance (2). This allows measuring a property, typically the intensity, of light reflected at the reference region (120) independent of the presence or absence of the target substance (2). This measured property of the reflected light can be used for performing an improved correction of light reflected at the investigation region (113).
Abstract:
A method for controlling the movement of magnetic or magnetizable objects (10) in a biosensor cartridge. The method comprises the step of providing a biosensor cartridge with a laterally extending sensor surface (A) and at least a magnetic field generating means (20, 30, 30') for generating a magnetic field with a field gradient substantially perpendicular to the sensor surface(A). The magnetic field generating means (20, 30, 30') are alternatingly actuated such that the generated magnetic field directs alternatingly the magnetic or magnetizable objects (10) substantially perpendicular to the sensor surface (A) away and toward the sensor surface, wherein pulse lengths of the alternating actuation are adjusted such that a lateral movement of magnetizable objects along the laterally extending sensor surface is substantially avoided.