Abstract:
An apparatus for applying atmospheric plasma includes a plasma generator, a pair of plates, a matching network and a transport. The plasma generator includes a power supply configured to provide high frequency electromagnetic waves to energize a plasma precursor fed into a plasma generation zone by a plasma precursor feed. The power supply is electrically connected to at least one plate to allow the creation of plasma between the plates. An impedance matching network is in electrical communication with, and positioned between, the power supply and at least one of the pair of plates. A transport is configured to transport an object through the plasma between the plates.
Abstract:
A modular multilayer deposition system includes a plurality of modular deposition chambers, including at least one parylene deposition chamber and at least one ALD deposition chamber. The parylene deposition chamber is connected in series with the ALD deposition chamber. Substrates are automatically moved from within the parylene deposition chamber to within the ALD deposition chamber or from within the ALD deposition chamber to the parylene deposition chamber.
Abstract:
A method for applying a protective coating to selected portions of a substrate is disclosed. The method includes applying a mask to or forming a mask on at least one portion of the substrate that is not to be covered with the protective coating. The mask may be selectively formed by applying a flowable material to the substrate. Alternatively, the mask may be formed from a preformed film. With the mask in place, the protective coating may be applied to the substrate and the mask. A portion of the protective coating that overlies the mask may be delineated from other portions of the protective coating; for example, by cutting, weakening or removing material from the protective coating at locations at or adjacent to the perimeter of the mask. The portion of the protective coating that overlies the mask, and the mask, may then be removed from the substrate.
Abstract:
A method for selectively removing portions of a protective coating from a substrate, such as an electronic device, includes removing portions of the protective coating from the substrate. The removal process may include cutting the protective coating at specific locations, then removing desired portions of the protective coating from the substrate, or it may include ablating the portions of the protective coating that are to be removed. Coating and removal systems are also disclosed.
Abstract:
A method for applying a protective coating to selected portions of a substrate is disclosed. The method includes applying a mask to or forming a mask on at least one portion of the substrate that is not to be covered with the protective coating. The mask may be selectively formed by applying a flowable material to the substrate. Alternatively, the mask may be formed from a preformed film. With the mask in place, the protective coating may be applied to the substrate and the mask. A portion of the protective coating that overlies the mask may be delineated from other portions of the protective coating; for example, by cutting, weakening or removing material from the protective coating at locations at or adjacent to the perimeter of the mask. The portion of the protective coating that overlies the mask, and the mask, may then be removed from the substrate.
Abstract:
The disclosure extends to moisture resistant energy storage devices, such as rechargeable batteries, and associated methods of forming the same. An energy storage device, such as a rechargeable battery, may comprise a cell including at least one electrical terminal and a circuit board electrically coupled to the at least one electrical terminal. The rechargeable battery may also include a moisture resistant coating on at least a portion of at least one of a surface of the cell and a surface of the circuit board. A moisture resistant coating may reside between the circuit board and the cell.
Abstract:
One or more masks may be used to control the application of protective (e.g., moisture-resistant, etc.) coatings to one or more portions of various components of an electronic device during assembly of the electronic device. A method for applying a protective coating to an electronic device includes assembling two or more components of the electronic device with one another. A mask may then be applied to the resultingelectronic assembly. The mask may shield selected portions of the electronic assembly, while other portions of the electronic assembly, i.e., those to which a protective coating is to be applied, may remain exposed through the mask. With the mask in place, application of a protective coating to portions of the electronic assembly exposed through the mask may commence. After application of the protective coating, the mask may be removed from the electronic assembly. Embodiments of masked electronic assemblies are also disclosed.
Abstract:
Systems and methods for monitoring the moisture to which an electronic device is exposed may alter or vary operation of the electronic device. Operation of the electronic device may be altered or varied to provide a notification that the electronic device has been exposed to moisture. When an electronic device is exposed to moisture, an operational mode of the electronic device may be changed. A change in the operational mode of the electronic device may include termination of the supply of power to one or more components, which may protect those components. Programs or apps that provide a user of the electronic device with information regarding exposure of the electronic device to an amount of moisture that meets or exceeds a moisture response threshold are also disclosed.
Abstract:
A plasma-enhanced chemical vapor deposition coating system includes a deposition chamber including one or more zones of processing, an electrode centrally located within the deposition chamber, wherein the electrode forms a central axis in the deposition chamber, and a carousel configured to carry at least one substrate. The carousel is configured to move axially in a direction along the central axis from a first end of the deposition chamber to a second end of the deposition chamber. The carousel is further configured to rotate around the central axis such that the substrate is oriented in a plurality of different directions relative to the central axis.
Abstract:
A method for depositing parylene onto a substrate includes utilizing a vaporization chamber and a pyrolysis chamber to crack a dimer into a monomer gas, directly ionizing the monomer gas by passing the monomer gas through a plasma generation chamber comprising plasma prior to injection of the monomer gas into a deposition chamber, and polymerizing the ionized monomer in the deposition chamber to create a polymer and a protective coating on a substrate.