Abstract:
Disclosed herein is a fluorescent light source including an yttria layer. Specifically, the current invention provides a fluorescent light source having high quality and a long lifetime, which can prevent a decrease in initial luminance of a fluorescent light source, including a fluorescent lamp, and resist the radiation of ultraviolet light and the permeation of mercury, which are the causes of deterioration of the fluorescent light source, so as not to decrease the luminance in proportion to the lighting time of the fluorescent light source, thus assuring both initial luminance properties and luminance properties after use for a long period of time. Such a fluorescent light source includes glass, a fluorescent material layer, and an absorbing layer composed mainly of yttria particles formed between the glass and the fluorescent material layer or on the inner surface of the fluorescent material layer. In addition, an yttria coating composition used in the fluorescent light source and a method of fabricating the fluorescent light source using the composition are also provided.
Abstract:
Disclosed herein is a colorless and transparent antibiotic material including silver and a method of preparing the same. Specifically, the current invention pertains to a method of preparing a colorless and transparent antibiotic material including silver (Ag), which includes a) reacting a salt including a silver ion (Ag+) with a salt including a sulfate anion, to prepare a silver (Ag)-sulfate complex; and b) diluting the silver (Ag)-sulfate complex prepared in a) with water, and to an antibiotic material prepared using the method. Further, the current invention pertains to an antibiotic material including silver, which is harmless to the human body and exhibits disinfecting and antibiotic activities, and as well, is colorless and transparent and does not easily form colored oxides, unlike conventional silver-based antibiotic materials, and to a method of preparing such an antibiotic material. Thus, the colorless and transparent antibiotic material of this invention can be widely applied to manufacture industrial goods, such as non woven fabrics, packaging materials, etc., living goods, such as clothes, bedclothes, etc., and fiber goods.
Abstract:
A plasma display panel is disclosed. The plasma display panel includes a substrate, a plurality of electrodes positioned on the substrate, a dielectric layer covering the plurality of electrodes. A height of the electrode around a central axis of a cross section of the electrode is larger than a height of the electrode at an edge of the cross section of the electrode.
Abstract:
Disclosed herein is a method for evaluating scratch resistance of a plastic resin comprising scratching a surface of a test sample of plastic resin using a scratch apparatus; measuring a scratch profile by scanning the scratched test sample with a surface profile analyzer; and measuring a scratch resistance evaluation index using the measured scratch profile to evaluate the scratch resistance of the test sample based on the scratch resistance evaluation index. The method has good reliability and reproducibility, reduces measurement time and errors caused by measurers and measuring conditions, provides an easy measurement and can be widely applied to all plastic resins.
Abstract:
A polymer composite material includes metal (oxide) nanoparticles chemically bonded to a vinyl polymer. Some embodiments may additionally comprise thermoplastic resin through which the nanoparticles and vinyl polymer are dispersed. In some embodiments, the composite materials have improved impact strength, tensile strength, heat resistance, and flexural modulus.
Abstract:
Methods of forming spacers on sidewalls of features of semiconductor devices and structures thereof are disclosed. A preferred embodiment comprises a semiconductor device including a workpiece and at least one feature disposed over the workpiece. A first spacer is disposed on the sidewalls of the at least one feature, the first spacer comprising a first material. A first liner is disposed over the first spacer and over a portion of the workpiece proximate the first spacer, the first liner comprising the first material. A second spacer is disposed over the first liner, the second spacer comprising a second material. A second liner is disposed over the second spacer, the second liner comprising the first material.
Abstract:
In damascene processing, metal hardmask sputtering redeposition that occurs during reactive ion etching (RIE) is exploited to produce, during the RIE process, a desired barrier metal liner on the etched feature.