Abstract:
Embodiments of the invention include a scatterometry target for use in determining the alignment between substrate layers. A target arrangement is formed on a substrate and comprises a plurality of target cells. Each cell has two layers of periodic features constructed such that an upper layer is arranged above a lower layer and configured so that the periodic features of the upper layer have an offset and/or different pitch than periodic features of the lower layer. The pitches are arranged to generate a periodic signal when the target is exposed to an illumination source. The target also includes disambiguation features arranged between the cells and configured to resolve ambiguities caused by the periodic signals generated by the cells when exposed to the illumination source.
Abstract:
Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
Abstract:
Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
Abstract:
A method for determining one or more process parameter settings of a photolithographic system is disclosed. The method is performed using a scatterometry tool (258) to measure a latent image of a pattern, a partially developed pattern, or a fully developed pattern. The scatterometry tool may be placed at the end of a stepper (254) or at the beginning of the resist developer (256).
Abstract:
Embodiments of the invention include a scatterometry target for use in determining the alignment between substrate layers. A target arrangement is formed on a substrate and comprises a plurality of target cells. Each cell has two layers of periodic features constructed such that an upper layer is arranged above a lower layer and configured so that the periodic features of the upper layer have an offset and/or different pitch than periodic features of the lower layer. The pitches are arranged to generate a periodic signal when the target is exposed to an illumination source. The target also includes disambiguation features arranged between the cells and configured to resolve ambiguities caused by the periodic signals generated by the cells when exposed to the illumination source.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system comprises any one or more of the following apparatuses: a reflectometric, a ellipsomertic, imaging, interferometric, and/ or scanning angle system.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system comprises any one or more of the following apparatus: an imaging reflectometer, an imaging spectroscopic reflectometer, a polarized spectroscopic imaging reflectometer, a scanning reflectometer system, a system with two or more reflectometers capable of parallel data acquisition, a system with two or more spectroscopic reflectometers capable of parallel data acquisition, a system with two or more polarized spectroscopic reflectometers capable of parallel data acquisition, a system with two or more polarized spectroscopic reflectometers capable of serial data acquisition without moving the wafer stage or moving any optical elements or the reflectometer stage, imaging spectrometers, imaging system with wavelength filter, imaging system with long-pass wavelength filter, imaging system with short-pass wavelength filter, imaging system without wavelength filter, interferometric imaging system, imaging ellipsometer, a spectroscopic ellipsometer, a laser ellipsometer having a photoelastic modulator, an imaging spectroscopic ellipsometer, a scanning ellipsometer system, a system with two or more ellipsometers capable of parallel data acquisition, a system with two or more ellipsometers capable of serial data acquisition without moving the wafer stage or moving any optical elements or the ellipsometer stage, a Michelson interferometer, and a Mach-Zehnder interferometer, a Sagnac interferometer, a scanning angle of incidence system, a scanning azimuth angle system, a +/- first order differential reflectometer, a +/- first order differential polarized reflectometer.