Abstract:
Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
Abstract:
An apparatus for illuminating a target surface, the apparatus having a plurality of LED arrays, where each of the arrays has a plurality of individually addressable LEDs, and where at least one of the arrays is disposed at an angle of between about forty-five degrees and about ninety degrees relative to the target surface, where all of the arrays supply light into a light pipe, the light pipe having interior walls made of a reflective material, where light exiting the light pipe illuminates the target surface, and a controller for adjusting an intensity of the individually addressable light sources.
Abstract:
An apparatus for illuminating a target surface, the apparatus having a plurality of LED arrays, where each of the arrays has a plurality of individually addressable LEDs, and where at least one of the arrays is disposed at an angle of between about forty-five degrees and about ninety degrees relative to the target surface, where all of the arrays supply light into a light pipe, the light pipe having interior walls made of a reflective material, where light exiting the light pipe illuminates the target surface, and a controller for adjusting an intensity of the individually addressable light sources.
Abstract:
To increase inspection throughput, the field of view of an infrared camera can be moved over the sample at a constant velocity. Throughout this moving, a modulation can be provided to the sample and infrared images can be captured using the infrared camera. Moving the field of view, providing the modulation, and capturing the infrared images can be synchronized. The infrared images can be filtered to generate the time delay lock-in thermography, thereby providing defect identification. This filtering can account for the number of pixels of the infrared camera in a scanning direction. For the case of optical modulation, a dark field region can be provided for the field of view throughout the moving, thereby providing an improved signal-to-noise ratio during filtering. Localized defects can be repaired by a laser integrated into the detection system or marked by ink for later repair in the production line.
Abstract:
To increase inspection throughput, the field of view of an infrared camera can be moved over the sample at a constant velocity. Throughout this moving, a modulation can be provided to the sample and infrared images can be captured using the infrared camera. Moving the field of view, providing the modulation, and capturing the infrared images can be synchronized. The infrared images can be filtered to generate the time delay lock-in thermography, thereby providing defect identification. This filtering can account for the number of pixels of the infrared camera in a scanning direction. For the case of optical modulation, a dark field region can be provided for the field of view throughout the moving, thereby providing an improved signal-to-noise ratio during filtering. Localized defects can be repaired by a laser integrated into the detection system or marked by ink for later repair in the production line.
Abstract:
Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.