Abstract:
The invention is directed to a use of a polymer composition comprising an ethylene polymer for producing a crosslinked article, a process for producing a crosslinked article and to a crosslinked article comprising a crosslinked polymer composition which comprises a crosslinked ethylene polymer.
Abstract:
Polypropylene composition having a melt flow rate MFR 2 (230 °C) of equal or above 15 g/10min comprising: (a) a crystalline polypropylene matrix; (b) an elastomeric propylene copolymer phase having a propylene content in the range of 40 to 80 wt.-%, and an intrinsic viscosity in the range of more than 0.7 to less or equal 2.5 dl/g; (c) a first polyethylene having a density in the range 905 to 925 kg/m3 and melt flow rate MFR 2 (190 °C) of below 30 g/10min; (d) a second polyethylene having a density of above 915 kg/m 3 , and a melt flow rate MFR 2 (190 °C) of equal or above 30 g/10min.
Abstract:
The present invention discloses an active supported catalyst system comprising: a) an iron-based non-metallocene catalyst component; b) an alkylating agent; c) an activating functionalised and fluorinated support. It also discloses a method for preparing said active supported catalyst system and its use in the polymerisation of olefins.
Abstract:
The present invention relates to a process for preparing an activating support for metallocene complexes in the polymerisation of olefins comprising the steps of: I) providing a support prepared consisting in particles formed from at least one porous mineral oxide; II) optionally fixing the rate of silanols on the surface of the support; III) functionalising the support with a solution containing a fluorinated functionalising agent; IV) heating the functionalised and fluorinated support of step c) under an inert gas and then under oxygen; V) retrieving an active fluorinated support. That activating support is used to activate a metallocene catalyst component for the polymerisation of olefins.
Abstract:
The present invention relates to the covalent anchorage of non-coordinating anions on mineral supports to prepare activating supports for the polymerisation of ethylene and alpha-olefins and wherein the activating species is provided by a phosphonium-borate or phosphonium alane pair. The invention also discloses the concomitant covalent anchorage of zwitterionic systems containing both the non-coordinating anion and the counter cation parts of the activating supports.
Abstract:
The present invention relates to the covalent anchorage of non-coordinating anions on mineral supports to prepare activating supports for the polymerisation of ethylene and alpha-olefins and wherein the activating species is provided by a phosphonium-borate or phosphonium alane pair. The invention also discloses the concomitant covalent anchorage of zwitterionic systems containing both the non-coordinating anion and the counter cation parts of the activating supports.
Abstract:
The present invention discloses a method for preparing an activating support and its use to activate metallocene or post-metallocene catalyst component for use in the oligomerisation and polymerisation of ethylene and alpha-olefins.
Abstract:
The present invention relates to the covalent anchorage of non-coordinating anions on mineral supports to prepare activating supports for the polymerisation of ethylene and alpha-olefins and wherein the activating species is provided by a phosphonium-borate or phosphonium alane pair. The invention also discloses the concomitant covalent anchorage of zwitterionic systems containing both the non-coordinating anion and the counter cation parts of the activating supports.
Abstract:
The present invention relates to the covalent anchorage of non-coordinating anions on mineral supports to prepare supported ionic liquids and to their use as activating supports for the polymerisation of ethylene and alpha-olefins. The invention also discloses the concomitant covalent anchorage of zwittehonic systems containing both the non-coordinating anion and the counter cation parts of the ionic liquids and of the activating supports.
Abstract:
The present invention discloses a homo- or co-polymer of ethylene characterised in that it combines the properties of: a) melt strength MS > 0.021 p - 0.131 wherein melt strength MS is expressed in N and extruder head pressure p is expressed in MPa, when processed in a rheological extruder through a die with L/D of 30:2 at a rate of 500 s"1 and at temperature of 190 0C; b) long chain branching index g' determined by SEC-VISCO larger than 0.90; c) polydispersity index (Mw/Mn) of at most 7. It also discloses a method to prepare said polyethylene resin.